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This report describes an investigation into two major areas of orbit

determination for lunar satellites.

(1) The convergence properties of the differential correction

process are studied. The reasons for convergence difficulties are

discussed and a number of possible aids to convergence are analyzed

and compared using numerical examples.

(2) Two preliminary orbit determination techniques, that is,

techniques which require no prior knowledge of the satellitets state,

are analyzed with respect to their ability to determine the satellite's

orbit. The effect of data quality_ data biases and number of observing

stations on the results are discussed and numerical examples are given.
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DIFFERENTIAL CORRECTION AND PRELIMINARY ORBIT

DETERMINATION FOR LUNAR SATELLITE ORBITS

By D. H. Lewis, P. A. Lavoie, and D. S. Ingrain

TRW Systems

I. SUMMARY

This report describes an investigation into the problem of orbit

determination for lunar satellites. Two major areas were studied:

a) The differential correction convergence characteristic s for

lunar satellite orbits using a large-scale compater pro-

gram, where an initial estimate of the orbital parameters is

needed to start the process and an elaborate mathematical

model, including all significant perturbations, is used to
compute the orbital path.

b) The preliminary orbit determination for lunar satellite

orbits, where no initial estimate of the orbital parameters

is required and a simplified mathematical model is used to

compute the orbital path. The technique of preliminary
orbit determination is treated here as a prelude to differ-

ential correction; i. e., the best possible preliminary esti-
mate of the orbital parameters is computed before attempt-

ing to refine the estimate through differential correction.

Observational data for both parts a) and b) were assumed to be taken

by the Deep Space Net (DSN) stations at Goldstone, Madrid, and Woomera,

with standard deviations of Z0 meters in range, 0.0Z meter/second in

range-rate, 0°. 06 in hour angle and declination, and a bias of 40 meters

in range.

The lunar satellite orbit used for most of parts a) and b) was the

intermediate elliptic orbit for the nominal Lunar Orbiter mission, as

defined by the following selenographic osculating orbital elements:

a = Z788km, e = 0.2869, i = 15 °, _2 = 25.°47, ¢0 = -IZ.°46,

M = 0 ° The convergence properties of alternate lunar satellite orbit
O

orientations were considered, with nominal values for a, e, Mo, and c0;

values of 0 °, 30 °, 45 °, and 60 ° for i; and I0 °, 90 °, and 130 ° for _2.



The purpose of part a) was to establish, through operation of the

TRW Orbit Determination Program (AT85), the convergence characteris-

tics and to investigate techniques for aiding convergence. Observational

data were simulated and noise was added to reflect the DSN sensor per-
formance. Perturbed values of the orbital elements were then selected as

initial conditions for starting the AT85 program. The behavior of the

program was then observed as various techniques to aid convergence were

applied. Technique s considered include:

i) Use of short observational data arcs (less than one revolu-
tion) before attempting multiple revolution arc s

2) Use of bounds on the size of the incremental corrections

applied to the orbital elements on each iteration

3) Correction of orbital energy

4) Use of additional observing sensors

The most effective technique was found to be the use of short arc

data spans with observations from two sensors. With this procedure, the

TRW Systems AT85 program was found to operate satisfactorily over a

wide range of initial condition errors without the use of bounds (or any

other convergence aid}.

The preliminary orbit determination study (part b) was conducted

with the aim of minimizing the time required to compute the preliminary

estimate. Two approaches were considered:

1) Development of a program to compute an estimate of the
orbital elements based on range and angular data (p, a, 5 }.

Such a program is potentially capable of computing an esti-

mate using a very short arc of data.

z) Development of a program to augment the existing Langley

Research Center (LRC} range-rate-only program (_},

capable of computing the orientation elements more quicldy

than may be possible with range-rate-only. The use of high

quality range data (p, in addition to _ }, and a redundant data

set contribute to the possibility of a reduced computation
time.

The p, a, 5 program gave two or three figures in the orbital elements

after 30 minutes of tracking; after 1 hour, four figures were obtained. The

objection to the low quality angular data is overcome by the use of a redun-

dant data set and a least squares fit to the observations. No precomputation



based on the doppler curve was required; the only program inputs are the

ob s er rations.

The p, _ program was found to be capable of determining i, _ , and

_0 to four figures using data from one revolution of the satellite, when a,

e, and M ° were assumed to have been precomputed by the LRC _ program.

Study of the interface between parts a) and b) revealed that the

quality of the initial conditions required to start the differential correction

process is much lower than is commonly believed.

The most significant new technology developed under this contract

is the position fix preliminary orbit determination technique.

2. INTRODUCTION

The problem of determining an orbit for a lunar satellite differs

from that for an earth satellite principally in the geometry involved

(reference 1). Because the relative positions of the satellite and the

earth-based sensors are limited, some serious computational constraints

are imposed on the orbit determination and the subsequent differential

correction. The variation in range measurement is small compared to the

magnitude of the range vector which is about 60 earth radii. Because the

moon subtends an arc of only 0f5 as seen from the earth, angular meas-

urements are low in quality relative to the size of the angle being meas-

ured. For the angular data standard deviations of 0o06 used here, the total

variation in the quantity being measured is less than 20 times greater than

the measurement quality.(for a typical orbit which subtends a total angle of

1 ° from the earth). Of course, all of the above constraints would vanish if

the observer were based on the satellite's primary; however, this is out of

the question at the present time.

As a result of the observing geometry, range and range-rate are

periodic, permitting a very accurate determination of the orbital energy,

i.e., the period. By simply noting the interval of repetition of events,

such as zero crossings in the range-rate measurements, the period can

be determined to a few minutes accuracy. Accounting for the effects of

3



the diurnal motion of the observer and the motion of the moon will yield an

improved, accurate determination. There is a singularity associated with

the periodicity of ranEe and range-rate. If the satellite orbit lies exactly

in the plane of the sky (normal to the line of sight of the observer), the

range is constant and the range-rate is zero. This is only true if the

motion of the moon and the diurnal rotation of the observer is ignored.

In fact, for such an orbit orientation, only the diurnal rotation and the

moon's motion would permit a non-singular orbit determination.

Differential correction is a process which improves the nominal

estimate of an orbit, given tracking observations of the satellite in ques-

tion. The method of solution involves linearization of a nonlinear regres-

sion equation. In essence, an estimate is made which minimizes the sum

of squares of the observation residuals in the least squares sense. Resid-

uals are differences between the actual observations and those computed

using the initial estimate (which is improved from iteration to iteration).

Before a differential correction can be initiated, an initial estimate

of the orbit is required, as mentioned above. The orbit is defined by six

associated parameters, such as components of position and velocity. In

general, in a preliminary orbit determination, there are more observations

than the minimum required for the geometrical determination of the six

orbital parameters. Therefore, like in the differential correction process,

an overdetermined system of equations is set up and solved in the least

squares sense.

The basic differences between the two orbit determination schemes

is the precision of the estimate and the starting conditions. The prelimi-

nary orbit determination technique requires either no initial estimate or

some very pessimistic estimate (like the nearest quadrant for angles),

depending on the type of'data and orbit in question. Unlike preliminary

orbit determinations, a fairly accurate estimate is required to initiate a

differential correction. If the estimate is very poor, the assumption of

linearity may be strained, resulting in divergent corrections. However,

given an appropriate initial estimate, the differential correction process

will yield a far more accurate estimate than a preliminary orbit estimate,

as the mathematical and physical models for computation are more

sophisticated.

4



For both orbit determination techniques, slant range and slant

range-rate observations are available. Angular data, though of poor

quality, in either local horizon coordinates (azimuth and elevation) or

earth equatorial coordinates (right ascension or hour angle and declina-
tion) is also available. Range accuracy is about one part in 108, and

range-rate, one in 105. Because of the small angular diameter of the

moon, as previously mentioned, angular data is only accurate to one part

in 20. Hence the addition of angular data to range and range-rate does not
significantly reduce the uncertainty in the tracking estimate.

The primary purpose of preliminary orbit determination techniques

is to obtain the orbital elements in a relatively short period of time with

no a priori estimate. The accuracy of the elements obtained should be

such that their substitution into a differential correction process will per-

mit convergence in a few iterations. Before beginning the study a litera-

ture search was conducted; the items of interest that were found are listed

in the Bibliography.

The two preliminary orbit determination techniques studied here

make use of two different data sets. The first uses range, right ascen-

sion, and declination (p, a , 5 ); and the second uses the magnitude of range

and the magnitude of range-rate (P, P ).

3. DIFFERENTIAL CORRECTION OF LUNAR SATELLITE ORBITS

The nominal orbit for this convergence study has an orbital period

of 220 minutes. Dispersions of various magnitudes and orientations were

added to the nominal components of position and velocity, thus creating

observed orbits for the purpose of data simulation. Depending on the

convergence technique being evaluated, orbital periods as high as 650

minutes and errors of over 10 ° in the orientation elements were used as

the observed orbit.

The precision orbit determination program used in this study was

TRW Systems' AT85 Program. Its primary purpose is to determine

satellite orbits using differential correction. The program determines the

5



elements of a satellite orbit and a covariance matrix of uncertainty in the

determination, starting with some initial estimate of these elements and

correcting it in accordance with observational data. The program includes

a unique collection of mathematical, statistical, and operational techniques

to make it operate rapidly and automatically and to produce high precision

in the results.

The AT85 Program utilizes a Cowell method of special perturbations,

with a Runge-Kutta starter, for propagating the satellite position and

velocity. The earth gravitational models provided are of graduated

accuracy; the triaxial potential model of the moon is available, and has

been utilized in this study.

Since the observations of a trajectory that are made by a tracking

system are imperfect, no trajectory fits these observations exactly.

Therefore, only an estimate of the actual trajectory can be obtained from

the data. Many methods of forming the estimate are possible, but the

weighed least squares method is probably the most common and is the

method employed by AT85.

AT85 provides a unique automatic control, which enhances the pro-

gram's ability to converge to correct elements. The differential correc-

tion is actually computed subject to a side condition which, in effect, limits

the size of the corrections so that the linear approximation is valid. The

limits assigned to the differential correction are termed "bounds. "

In addition to solving for six orbital elements and two drag param-

eters, AT85 has the capability to determine and remove biases from

observational parameters and topocentric sensor location coordinates.

Bias errors in the observations and uncertainty in the locations of the

sensors may contribute more error to the orbit element determination

than both the mathematical model and computational limitations combined.

Furthermore, accurate e stimation of the uncertainty in the orbital elements

requires that the errors in the observations be unbiased.

AT85 calculates the corrections to the initial estimate in either

geocentric or selenocentric coordinates. The latter system permits

differential corrections of lunar orbits under special circumstances,



which are otherwise impossible to achieve. The corrections are performed

in either Cartesian (xyz) or polar/spherical coordinates. The integration

of the trajectory, on option, can be performed using dynamical centers

other than the earth, permitting for example, selenocentric integration.

A more detailed description of AT85 is found in the appendix, where

the structure and general internal processes of the computer program as

well as the mathematical models and techniques employed in the orbit

simulation and differential correction process are treated more fully than

is permissible here.

The TRW Systems approach for selecting observed state vectors,

from which the observations used in differential correction are computed,

was to duplicate the "real-world" situation as closely as possible. There

are two methods of selecting the reference and observed state vectors,

given the dispersions. If the actual state vector, x A, from which the

observations are generated is held constant and the initial estimates, x R,

which are used to start the differential correction, are varied, only one

set of simulatedobservationsis required to carry out the study; that is,

analyze the effects of various dispersion magnitudes and orientations of

the initial estimate from the actual orbit. This would be the least expen-

sive way to conduct the study, since the data simulation requirements are

minimized.

However, in a "real-world" mission, the actual state vectors

achieved, x A, would be dispersed about a given preflight nominal, Xp,

and each of these state vectors will have its own particular set of obser-

vations. The various actual state vectors, x A, are generated by perturb-

ing the nominal estimate, x A, in various directions and magnitudes; the

observations are then generated from each of these state vectors.

Although this latter method involves much more data simulation, it was

adopted by TRW Systems because it more nearly reflects what will occur

in an actual mission.

The observations corresponding to an observed orbit, which is rep-

resented by a state vector, x A, were generated with TRW Systems' data

simulation program, AT-14. From a reference trajectory, which is

7



specified on an input ephemeris tape, topocentric observations are com-

puted for each radar station desired. The individual noise models,

standard deviations, and biases are included in the observations and are

computed by means of a random vector generator.

A more detailed description of TRW Systems' AT-14 program is

found in the appendixes.

Summarizing the results of this study, the JPL orbit determination

program (SPODP} appears to be adequate for the orbit determination of

lunar satellities, provided certain operational philosophies are adopted.

They are:

a) Require that at least two sensors be taking simultaneous
observations immediately after the lunar deboost.

b) Use short arc differential corrections with the observations
taken in a), and make subsequent fits with the improved
estimate of the first as initial conditions.

c} If the period error is substantial, apply a hand computed

energy correction to the initial estimate.

In general, the use of a priori information was not a significant aid to

convergence, except for tracking with very few observations. The tech-

nique of normal matrix conditioning is not a practical method, especially

in real-time considerations. This is because the conditioning normal

matrix that will effect convergence is particular to the quantity of tracking

data and the tracking geometry.

3. 1 CONVERGENCE PROBLEMS IN THE DIFFERENTIAL
CORRECTION OF LUNAR SATELLITE ORBITS

3.1. 1 Nonlinearities

A trajectory is completely determined by a state vector, qA' defined

at some reference time known as epoch. If a set of observations, z, have

been taken from the reference trajectory, the observations are assumed

8



to be related to the state vectorx A in equation (1). Restricting the dis-

cussion to the case where the only source of error is zero mean random

noise

y = f(x A) + _ (I)

where n is a column matrix (r x i) of zero mean random noize, y is of

order (r x I), and x A is of order (p x i). (The number of solution

parameters is p, and the number of observations is r.) Equation (I) is

a nonlinear regression equation; the method of solution involves lineariz-

ing the equation by expanding f in a truncated Taylor series about an

initial estimate, Xo, since the actual value of x A is unknown. Writing

such an expansion and retaining only the linear terms

Y = Yo + A(XA - Xo) + _ (Z)

where Yo = f(Xo)

and the elements of the (r x p)matrix A are the partial derivatives of

the observations with respect to the state vector. The elements may be

written

aY i
a0. -

1J @x •
J

By denoting

and

equation (Z) may rewritten

8Y = Y = Yo (3)

- x (4)
5x = x A o

6Y = ASx A + c (5)

where 6Y is the observed minus computed observational residual. The

problem is to find a 8x A which, when added to Xo, will yield an improved

estimate of x A. (See equation (4).) This is usually done by finding that

x A, which minimizes the residuals in the least squares sense.

As an example of the least squares criterion,

pr oblem:

Givena set of points (_i' qi )' i = I, 2, ....

fit a (p - l)th order polynomial of the form

consider the following

n, if it is desired to

9



p-1

i=O

a set of coefficients (bj, j = O, 1 ..... , p - 1) is determined such that

p-1 • i

i j =0

is minimized; that is, that the sum of squares of the deviation from the

By noting thatpolynomial are minimized.

p-I
p-I

j=O

m m

b
o

b 1

b z
)

bp_ 1

(7)

st
is a (p - 1)

at the point

degree polynomial with coefficients bo, ... bp _ 1

_i' and defining

ql

qz

qn

y , and 6x =

b
o

b I

nxl pxl

evaluated

equation (6)may be rewritten

S = S(Sx) = (y - A6x) T (y - ASx) (8)

Note: In terms of the above definitions, A is a matrix of order (n x p),

and the element a.. is written:
1j

a.. = _!-1
1J ].

i=l,Z.., n

j=l,Z.., p

I0



The least squares criterion requires that an _ be found such that S(_) is

minimized. Expanding equation (8}

T (9)
S(Sx) = yy - zSxTATy ÷ _xTATA8 x

AS(6x) = - 2A6xTATy + A6xTATA6x + 5xTATA6x

= - ZA6xTATy + 2A6xTATASx

For the minimum S(Ax), AS = 0

ATASx - ATy = 0

6xA (ATA)- 1 A T= y (10)

Equation (10), the required minimization of equations (6) and (8), is called

the normal equation.

Rewriting equation (5),

6y = ASx + c

it is obvious that if the observations are not of the same observable (i.e.,

range, angles, doppler, etc. ), then the estimate A_ is a function of the

units. A matrix C is introduced which takes the units into account, and

includes a priori knowledge of the variance of the noise and on the obser-

vations (See Section 3.4. Z). The matrix C is of order (n x n) and

cTc = W (il)

Equation (5) is multiplied by the matrix C

Cy = CA6x + C_ (lZ)

Le tting

equation (12) is transformed

5Y' = Cy

A' = CA

E I -----CE

By' : A'6x + _' (13)

1!



The least squares estimate of

equation (1 0)

6x

8 x for this equation,

-1

= (A'TA ') A'Sy'

Eliminating the prime notation and using definition (1 1)

-1

6xA = (ATcTcA) ATcsy

-1

5xA = (ATwA) ATsy

recalling

(14)

(15)

Since 5x minimizes

(8'y- A'Sx) w (8'y - A'Sx) = (By - ASx) w W(Sy - A6x)

it is called the weighted least squares estimate corresponding to the

original regression equation (equation (5)).

Recalling the constraint under which equation (Z) was formulated,

(i.e., that only the first-order term in the Taylor series expansion is

retained) brings to mind the need for iteration in least squares curve

fitting of trajectories. Since a nonlinear system is being solved by

linearizing, which is at best a good approximation, the solution is obtained

by a succession of linear approximations; i.e., iteration. Closely related

to the amount of iteration required is the quality of the initial estimate, x o.

If the initial estimate is very close to the actual state, x A, then the lin-

earizing condition is immediately a good approximation, and one or two

iterations only are needed to solve the system.

If, on the other hand, the initial estimate is poor (in terms of lin-

earity), it may be difficult or impossible to solve the system because

extremely large (and inappropriate) corrections may be called for on the

first iteration. The technique of constraining the size of the correction

vector is often very helpful in this otherwise hopeless situation. The

concept of constraining or bounding the solution to the normal equation

is discussed in section 3.3. Z.

lZ



3. I. Z Consistency of Residuals

A large period error in the initial estimate of a differential correc-

tion with greater than one revolution of data gives rise to convergence

difficulties. The observed minus computed observations, the residuals,

from which the differential corrections to the initial estimate are com-

puted, are inconsistent from one revolution to the next. A numerical

example using a 3 _ energy perturbed orbit (from the nominal orbit A)

illustrates this problem.

To simplify the illustration, assume the observer is on a nonrotating

earth and that the moon is stationary. If the orbit is circular and lies in

the earth-moon plane, the geometry of figure 1 illustrates the situation.

Both range and range-rate are periodic functions of time: for range it is

a sinusoidal oscillation about the earth-moon distance, the minimum and

the two zero crossings are visible, and the maximum range occurs directly

behind the moon; for range-rate the variation is also sinusoidal, there is

one zero crossing, and both the maximum and the minimum are visible.

The observed range-rate for a circular orbit of 2800 kin, with a

period of 220 minutes (the nominal period) is plotted in figure 2. This

range-rate history corresponds to the computed observations. On the

same graph, the observed range-rate history is plotted. This corresponds

to a 3730-km circular orbit with a period of 340 minutes. The "observed

minus computed" residuals of the observed range-rate and the computed

range rate is plotted in figure 3. These residuals are used to compute

corrections to the initial estimate defining the computed orbit.

Three revolutions of the satellite, based on the computed period,

have been considered. The second and third revolution residual histories

have been redrawn over the first to facilitate comparison. Note that the

residuals at the beginning of the first, second, and third revolutions are

inconsistent in that they call for changes in the elements (of the nominal

orbit, i. e., the computed orbit) which will simultaneously increase,

decrease, and leave unchanged the range-rate observations at this point.

This example has been computed using a modification of the 3_ energy

perturbed orbit; this corresponds to a 90 m/s dispersion in velocity and

13
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45 km in position. If the periods of the observed and computed orbits

agree, the residuals of this computed example would be the same from

one revolution to the next (i. e. , they would be consistent), and their use

in a differential correction would lead to an appropriate solution.

The energy correction is a method of adjusting the nominal period

to that of the observed one. This technique requires no special programs,

but merely a few simple hand computations derived from the observed

period of the doppler curve. Since the energy correction is an approxima-

tion, there is no point in getting an exact value of the observed period by

correcting the doppler curve for the diurnal motion of the observer and

the motion of the moon. This subject is treated more fully in section 3.3. 1.

After the orbital energy of a nominal estimate has been adjusted to

that of the observed orbit, the residual inconsistency from revolution to

revolution vanishes; that is, the residuals are in phase. However, if

there are appreciable errors (other than orbital period) in the initial esti-

mate, large cyclical residuals could result. Since the orbital energies

are equal, the effect may not be very noticeable in the range-rate

measurements. However, if these other remaining errors were in the

orientation of the orbit with respect to some reference plane, the range

residuals would be appreciable. This situation is illustrated in figure 4,

where the observed and computed ranges are plotted with the earth-moon

distance removed.

The relatively large (phased) range residuals which could be com-

puted from figure 4 would give rise to nonlinearities in the differential

correction process. In a nonlinear situation, the range residuals exhibit

behavior as illustrated in figure 5, which are computed from figure 4.

Therefore, the nature of the convergence problem which is associated

with a bad initial estimate can be determined by inspecting the behavior

of the computed residuals history; it is preferable to look at the observa-

tional residuals of more than one revolution of the nominal estimate, if

this data is available to the analyst.

17
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3.2 ORBIT SELECTION AND DATA SIMULATION

3. 2. 1 Nominal and Alternate Orbits

The nominal lunar satellite orbit used in this study is defined by the

following classical selenographic elements:

a = 2788 km

e = 0. 2869

i = 15._0

_2 = 25._47

_o = _12._46

T = 27 June 1966, 4h 0m 48 s

(Pericynthion pas sage)

The equivalent geocentric cartesian elements of this orbit, as well as all

other orbits and data sets used in the study, are tabulated in appendix A.

In order to maintain some relationship between the size of the per-

turbations and the reflected uncertainty of the state vector, perturbations

of the state vector were selected using the covariance matrix, _ R (sup-

plied by LRC), associated with the above classical elements. These per-

turbations and the associated data simulation are discussed in the next

s e ction.

The nominal orbit has an orbital period of 220 minutes, with peri-

cynthion and apocynthion altitudes of 250 km and 1850 kin, respectively.

It was the principal orbit used in this convergence study and is referred

to as case A.

The study of the convergence characteristics of alternate lunar

satellite orientations, the "B" cases, was concerned with the effects of

observing the lunar satellite in different orientations. The effect of

varying satellite orientations on the differential correction process is

evident when one considers an orbit which lies in the plane of the sky. In

20



such a case, the range is constant, and range-rate is zero, neglecting the

motion of the moon. The satellite orbits selected for study are tabulated

below for reference.

TABLE I.--CLASSICAL ELEMENTS OF
ALTERNATE SATELLITE ORBITS

Orbit

code

BI

B2

B3

B4

B5

B6

B7

a

2788

2788

2788

2788

2788

2788

Z788

Classical Elements

e i _2

0. Z869 0 ° 25? 47

0. 2869 30 ° 25747

0. 2869 45 ° 25? 47

0. 2869 60 ° 257 47

0. Z869 15 ° I07

0. 2869 15 ° 90?

0. 2869 15 ° 130?

T = 27 June 1966, 4 h 0 m 48 s

M

-12746

-12746

-12746

-12746

-IZ._46

-12.°46

-1Z756

The orbital period, the pericynthion altitude, and the apocynthion

altitudes are unchanged from the nominal orbit.

3.2.2 Data Simulation

The purpose of the data simulation is to provide computed observa-

tions, which would be taken by tracking stations of interest. The com-

puted observations are then used to initiate a differential correction

procedure using a nominal estimate, x N, which is perturbed from the

actual state vector, x A.

In the real-world situation, the actual state vectors, XA, achieved

after the main lunar deboost will be dispersed about the nominal aim point,

and each of these state vectors will have its own particular observational

21



time history. Since there is only one preflight nominal state vector XR,

the computed observations are based on an actual state vector XA, which

is perturbed in some way from the preflight nominal. Hence, this

approach requires a data set for each actual state vector, XA, which is

selected for study.

A systematic method of calculating the state vector x A is needed in

order to keep the number of data sets small. As previously inferred, the

actual state vector, x A, is related to the preflight nominal state vector,

x R, by the equation

x A = x R + f(_.R )

where _R is the a priori covariance matrix reflecting the uncertainties

in x R. It is assumed that the uncertainties in position and velocity com-

ponents are each spherically distributed, and that (for the moment) "_

and _ are uncorrelated. The probabilities that the magnitudes of the per-

turbations lies within the 1, 2, and 3_ spheres are 0. Z0, 0.74, and 0.97,

respectively. The 1_ values of position and velocity derived from R

(see AppendixA) are 15 km and 30 meters/second, respectively.

x R ,

The orientation of the perturbations to the nominal state vector,

were applied in the directions described below:

a) I, 2, and 3 perturbations in the direction of the nominal

position and velocity vectors. That is, to maximize the

error in orbital energy, I Ar I and I _v I multiplied by their

respective direction cosines will yield the appropriate

vector components.

b) 1, Z, and 3 _ perturbations in the direction normal to the

orbital plane; i. e. , normal to the plane of-9 and _. This

maximizes the perturbations in the orientation elements,

_2 and i. Since this perturbation results in a relatively small

change in the magnitudes of the position and velocity vectors,

the accompanying energy change is very small.

The energy perturbed state vector is calculated as follows:

i, m, n = direction cosines of position

or velocity vectors

XA = XR + f(Y:R )

22



XA=

x

-- .-%

i

ml

nl
+ 01

01

JJ
P

OI

OI

OI

[r I n_ + 1 , Iv] n_

ml

nl
v

The orientation perturbed state vector is calculated as shown

below:

xA = xR + f(E R)

-gxv

h
x

h =
Y

h ,
, z J

direction cosines of angular
momentum vector

xA =

x

Y

z

Y

z

m

+ 0 I[rlno-+

iO '
I

0 i
D

ol
0

I
0

I

hx

_h

no"

A system of abbreviations has been adopted to allow compact speci-

fication of the actual state vectors, XA, representing a real-world satel-

lite (dispersed about a given nominal state, XR)

OPn -

EPn

Example:

B3OP3 -

AEP2 -

Orientation perturbed; n¢ dispersion magnitudes

Orbital energy perturbed; n_ dispersion magnitudes

Reference orbit B3 with 3_ orientation perturbations

Reference orbit A with 2_ orbital energy perturbations
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Since the computed observations are generated from a trajectory

which was propagated from a state vector, the abbreviations introduced

above are applicable to a set of observations.

Hence, AEP3 data was computed from a trajectory which was

generated by the state vector, AEP3 (nominal state vector A, energy

perturbed, 3¢).

The perturbations described permit two different types of initial

conditions for the start of a differential correction: 1) an energy perturba-

tion, and 2) an orientation perturbation. A third type of perturbed initial

condition, the epoch perturbation, can be achieved by simply shifting the

epoch time. This technique results in essentially an in-plane error.

However, the epoch perturbation has a unique constraint among the three

types of perturbations; the initial conditions for the differential correction

must be selenocentric. If initial conditions were input in geocentric coor-

dinates, the effective perturbation on the initial conditions would be equal

to the change in position and velocity of the moon during the epoch shift

interval.

The first step in the process of simulating observations is to calcu-

late perturbed state vectors, dispersed from the nominal state vector by

a function of the a priori covariance estimate of the nominal state vector.

Orbital energy and orientation perturbations of varying magnitudes (n_)

were added to the nominal state vectors, resulting in the appropriate per-

turbed initial conditions. There were eight nominal state vectors; the

first is referred to as the "A" vector, which was used to implement most

of the convergence study; the remaining seven state vectors, BI thru B7,

represent the alternate lunar satellite orbits. (Listed in the previous

section and in the appendix).

The perturbed state vectors were the initial conditions for genera-

ting a trajectory; the duration of the trajectory was equal to the longest

simulated tracking interval anticipated. The physical model consisted of

the moon as the dynamic center with a triaxial potential representation,

and with the sun and the earth as perturbing bodies. The initial position

24



and velocity were in earth-centered inertial (ECI) coordinates; however,

the state vector was "phase shifted" to selenocentric coordinates immedi-

ately, thereby making the moon the dynamical center.

The geocentric cartesian position and velocity of the vehicle were

written on an (ephemeris) output tape at a 1-minute interval. The output

tape representing the trajectory of the vehicle in a perturbed trajectory

was then used as an input tape to the TRW Systems data generation pro-

gram, AT-14. (See appendix D.) Given the geographical coordinates of

the stations of interest, the noise model for each, and an ephemeris tape,

the AT-14 program generates the topocentric observations of range,

range-rate, right ascension, and declination on punched cards in suitable

format for input to the AT-85 program as observations.

The station locations of the three sensors used in the simulation

are tabulated below:

Station ID Latitude Longitude Height (m) Name

01 35. 2060 Z43. 1500 1040 Goldstone

02 -31. 2100 136. 8850 151 Woomera

03 40. 4370 - 3. 7650 50 Madrid

The following data qualities for the three Deep Space Net (DSN)

stations which are appropriate to a 1-minute data rate are listed below.

Range _ : 20 m Bias = 40 m

Range rate _ = 0.02 m/s Bias = 0

Right ascension _ = 0.°06 Bias = 0

Declination _ = 0.°06 Bias = 0

The AT-14 program generates observations at a specified data rate

but does not check for lunar occultation. However, the AT-4 Tracking

Program has a radar steering option which specifies the lunar occultation

intervals as seen from a given radar station on earth for any given orbit

about the moon. This made it possible to delete the appropriate "occulta-

tion spans" from the unedited output of AT-14.

25



The importance of deleting the unobservable data becomes apparent

in some of the alternate lunar satellite orbits when the vehicle goes behind

the moon a few minutes after the beginning of the tracking epoch.

Figure 6 is a chart of the rise and set times of the lunar satellite

for the three DSN stations. The lunar occultation times for the entire

24-hour span are also indicated.

3. 3 CONTROL OF FACTORS AFFECTING CONVERGENCE

3. 3.1 Techniques for Obtaining Consistent Residuals

Initial estimate.-- The best method of avoiding inconsistent residuals

is to have the best possible nominal estimate. Although the mission nomi-

nal may reflect small uncertainties, the I_ energy error for the missions

under consideration is about 15 percent. An estimate obtained from a

preliminary orbit determination technique is far better than a mission

nominal, and using such an estimate would obviate any technique which is

designed to cope with the inconsistent residuals problem.

Energy correction. --The solution to the problem of inconsistent

residuals is an energy adjustment. Since both range (with the earth-moon

distance removed) and range-rate are periodic, the orbital period, and

hence the energy, are readily calculable. The period of the orbit can be

approximated by noting the elapsed time between two successive zero

crossings of the range-rate observations.

It should be noted that the period obtained in this fashion is uncor-

rected for the observer's diurnal motion and the motion of the moon. To

correct for these two effects, certain quantities are computed, given the

.following information:

.L"

rE = observer's geocentric velocity

rM = geocentric range of moon

r M = geocentric velocity of moon
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-! r E r M

rm [_M

rlVI . r M

= range-rate corrected

The quality p , the range of the satellite with respect to the

observer, should be used instead of _M' but since the former quan-

tity is not known accurately, the approximation is made. As will be

shown later, these corrections are not critical to the energy correction

method.

The energy correction is applied by improving the initial estimate

of the velocity vector. The difference between the observed and computed

periods can be equated to a difference in semimajor axis; this difference,

in turn, is equated to a change in velocity. The radius vector remains

unchanged. Note that this is only one of many ways of correcting the

energy; since we have no a priori knowledge as to how the correction

should be applied, the most convenient is selected.

The foregoing formulation is valid for relatively small differences

(<10%) in period. Using a canonical set of units,

3
pZ = a

2PAP = 3a2Aa

3
AP = _Aa g_-

V 2 _ 2 1
r a

= Pobserved - Pcomputed

AV _ Aa
Z

2Va

This AV correction, when applied to the initial velocity estimate, will

equate the observed period to the computed period.

When the difference between the two periods is large (>10%) the

differential formulas given above become inadequate• The AV is then

computed without using differentials.
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2 1
V' - (scalar)

r initial aobs e rved

AV = V _ - Vinitia I (scalar)

The energy corrected velocity vector is then computed

_EC = _initial + IAVI

where are the direction cosines of the initial velocity vector.

Since the energy correction matches the periods by a velocity

adjustment only, it is at best a partial improvement to the initial state

vector. And, because it is only an approximation (the tendency is to over -

correct the velocity), it is not critical that the estimated period, presum-

ably from a Doppler curve , be corrected for the motion of the moon and the

diurnal motion of the observer.

It should be noted that all test cases, unless discussed in the follow-

ing sections, have simulated tracking from two sensors. Also, all test

cases use AEP3 data, which is 30- -energy perturbed from the nominal

orbit. The AEP3 observed period is 340 minutes; the nominal period is

220 minutes.

The energy correction technique was tested extensively. It was

used in many of the "A" cases; that is, with the nominal orbit. Using

AEP3 data (3_, energy perturbed) the energy corrected initial estimate

proved to be an effective convergence aid for data spans of up to 1000

minutes. For the relatively short data spans, (60 minutes), the nominal

(not-energy corrected) achieved convergence, although the energy correc-

tion has a higher convergence rate. This is illustrated in figure 7. The

energy correction becomes essential for convergence if there is more

than one revolution of data. Figure 8 illustrates the convergence of an

energy corrected curve fit and the divergence of the nonenergy corrected

fit. This test case had 680 minutes (2 revolutions) of tracking. These

remarks apply only to 3 _ energy perturbations.
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The effectiveness of the energy correction was demonstrated when a

45-minute data arc required an energy correction to converge. The data

was 6¢ energy perturbed (AEP6); the period was 650 minutes, nearly three

times the nominal value. Figure 9 illustrates this case.

The energy correction for a short arc fit may be of academic inter-

est only, since at least one complete revolution of data is required before

the period (and hence, energy) can be estimated. However, if the period

error is very large, say greater than I00 percent, an energy correction

is needed, even for a relatively short arc. (See Figure 9.)

Stepwise fits.--The technique of stepwise fits refers to a series of

differential corrections, beginning with short data arcs, and progressively

adding more data, each time using as initial conditions the converged state

vector from the previous fit. This method can be considered as an alter-

native to the energy correction, since the converged state vectors from

short arc fits already have an improved energy estimate. The method is

practical for real-time data operation, since data can be used as it

becomes available.

The stepwise fit technique is an effective means of achieving con-

vergence with large amounts of data, and does not require an energy

correction. Figure 10 illustrates the convergence rates of 300-minute

data arc differential corrections. Figure 11 illustrates the convergence

rates for 1000 minutes of tracking. The nominal curve is an energy

corrected fit. (Such a long data span would not converge, were it not

energy corrected.) The step fit used the converged state vector of a 45-

minute tracking arc as in Figure 10 as its initial estimate. The effective-

ness of the energy correction shows up in the low initial RMS when

compared to the nonstep fits.

In-Plane correction.-- The convergence study has been based on the

recovery of state vectors which were dispersed in orbital energy or

orientation from the nominal estimate. A third type of dispersion, an

in-plane error, can be simulated by simply shifting the time associated

with the initial estimate.
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It is imperative that the state vector be in a selenocentric coordinate

system when an epoch shift is initiated. If the geocentric state vector with

a perturbed time tag is input as initial conditions, the motion of the moon

during this interval is unaccounted for, thereby shifting the position of the

satellite (with respect to the moon) by a vector equal to the difference of

the two position vectors of the moon at the initial time and the perturbed

epoch time.

By shifting the epoch time 10 minutes, and stating the initial condi-

tions in selenocentric coordinates, a 30 ° in-plane error was simulated.

Since the selenocentric position and velocity vectors of the satellite (in a

340 minute orbit) change rapidly with time, it was necessary to constrain,

i. e., bound, the size of the solution vector. Since the position and veloc-

ity vectors are nonlinear over such a time interval, the unrestrained

solution was divergent. However, the bounded correction vector eventually

(10 iterations) changed the initial estimate to the position and velocity of

the perturbed epoch time (10-minute shift).

This technique can be extended to a situation where the satellite goes

behind the moon before acquisition. When the satellite becomes visible

again, the residuals due to a poor initial period estimate could be very

large. As will be shown in a later section, a poor initial period estimate

is best recovered by using a short arc of tracking immediately after

injection into a lunar orbit. However, if the satellite is occulted before

any data is acquired, either because the satellite becomes occulted almost

immediately after deboost or a tracking malfunction prevents acquisition

at the critical time, this critical data near the deboost point is missing.

The situation is not hopeless, however.

When the satellite comes back on the visible side of the moon, the

time at which the range-rate is zero, and/or when the range is minimum,

can be noted. When this time is compared to the computed time (from

the initial estimate) of zero range-rate crossing time and minimum range,

a period difference is obtained. By updating the computed time to the

observed time, that is increasing the reference time by the observed

period, the large residuals which would have occurred will be avoided.

A short tracking arc as the satellite passes near the epoch should yield

the actual state vector. As in the test mentioned, it may be necessary

to bound the solution, as large nonlinearities are encountered in this type

of differential correction.
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3.3. g Techniques for Handling Nonlinearity Problems

Bounded solutions to the normal equation.-The differential correc-

tion process depends upon the appropriateness of a linear approximation

to a nonlinear function. In the event that computed corrections from the

linear approximations are too large, the correction may be a divergent

one. It is the function of the bounds to limit the size of the correction so

that the linear approximation is valid. (See References g and 3. )

The basic problem of orbit determination is to find values for the

parameters x such that the weighted residuals By, = Ym - Yc (x) are mini-

mized in the least squares sense, zm = observed data, Yc = computed

data based on initial estimate. The problem of minimizing f (x) = llym

- Yc (x) liZ is nonlinear in x and is approximated by a linear problem.

That is, finding a 5x such that

fl (Sx) = llYm -Yc (Xo) " A" 5xll 7 (16)

or

fl (x) = liA" x - Ymcll 2' (17)

is a minimum. As in the notation of section 3. I. I, A is the matrix of

partial derivatives of observations with respect to the state vector

parameters, x.

In the development which follows, only two parameters will be con-

sidered in order to permit graphical interpretation.

That is,

(xl)ix)= (18)
5x = xz Y

The surface f will be represented above the x I - x Z plane by its contour

lines. The contour lines of fl (Sx) are ellipses, and to the extent that the

residuals, By, are linear in x, the true surface f(xiexhibits the same

property.
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When, as is usually the case, the residuals are not linear in 6x,

the surface

(x) = II Ym " Yc (Xo + 6x)EIz (t9)

is not quadratic. In such a case, the orbit determination process is exe-

cuted in the following sequence (iteratively):

(a) Accumulate the ATA, ATb, and bTb matrices; b is the col-

unun vector of residuals. The ATA matrix represents the

shape of the quadratic surface; ATb, the direction of its

gradient; and bTb. the contour level of the point x o.

(b) The ATA matrix is then used to approximate the quadratic

surface, and its minimum point, x, is taken as the next

approximation to the minimum point of the true surface,

f (Sx).

(c) The predicted height of the estimate x' is compared with

II_ II2. If the difference is insignificant, the process is

said to be converged; otherwise, the procedure (a), (b),

is repeated.

(c)

Repeating the process is no assurance that the next (nth) iteration

will be a converging one. If the following (n+l) iteration is converging,

the intervening divergence is ignored. This is not likely to happen,

since the diverging solution is not as good (not as high a contour level) as

the previous solution. It is best to go back to the best previous estimate,

and constrain the correction 5x' such as to assure convergence.

To restrict the size of the correction, an ellipse is drawn in the

parameter space (xi - x 2 plane) with specified axes in the coordinate

directions. (See figure 12. ) The dimensions of the ellipse are specified

on input by the analyst. The minimum of the approximating quadratic

surface, fi(6x), is found along the bounding allipse. This point, x', is

also the minimum point on fl(6x) within the bounding ellipse.

Mathematically, the problem is to minimize

g

fl (Sx) = IIA" 8x-By II (go)
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such that

IIB. 6x II2 __ 1 (21)

where B is a diagonal matrix whose elements b.. is the bound (input) on

the ith variable and the semiaxis of the ellipse. Actually, an estimate,

6x' is first computed which locates the minimum of the approximating

quadratic surface, i.e.,

fix' = (ATA) -1ATb (22)

If the condition of equation (20) is met, the minimum point already lies

within the bounding region.

a new function,

(6x)

equation (23), is minimized.

If the condition is not met (liB • 6x'll 2 > 1),

= fl (6x) + d lib • 6xll Z (23)

As the value of d increases, the minimiza-

tion of F requires smaller and smaller values of 6x, the correction. By

iteration, a value of d is found such that liB • 6xll 2 - I. The minimization

of F is then

F = fl (6x) + d IIB • 5x II2 = fl {6x) + d (24)

which is equivalent to minimizing f, since they differ only by a constant,

d. Therefore the point xl',

x I' = Xo +6Xl' (25)

minimizes fl (6x) along the bounding ellipse liB " 6xll =

shown that x I' minimizes fl (6x) within the ellipse also.

I. It can be

In actual practice, the bounds are automatically adjusted to com-

pensate for divergence and for convergent steps which are "too slow";

that is, not permitting large enough steps while still preserving the line-

arity assumptions, in the AT85 Program, the bounds are halved if an

iteration yields a larger sum of squares of weighted residuals. If this

fails, the bounds are halved again, until the solution is constrained to a

linear region. The process stops when one-eighth bounds are reached and

the iteration is still divergent. On the other hand, if the new sum of
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squares is less than the previous iteration and within a certain range of

the predicted sum of squares, the bounds are doubled to permit larger

corrections. There is a test criterion for doubling bounds which involves

comparing the predicted sum of squares with the actual sum of squares.

This is covered in the appendix.

Figures 13 and 14 depict the convergence rates for 60- and 300-

minute differential corrections -- bounded and unrestrained. All initial

conditions are energy corrected. For both data arcs, the unrestrained

solution converges in fewer iterations than the bounded solution.

Most of the short arc fits did not require a bounded solution. In

fact, bounding the solution tended to retard convergence, though it did not

prevent convergence. In some special situations which would tend to be

divergent, such as one-station-only differential corrections, the bounds

prevented large divergent steps from which the program could not have

recovered. For very long data arcs (greater than two revolutions) initial

conditions that are energy corrected only should have a restricted solu-

tion. No generalization can be made concerning the convergence of an

unrestrained solution. Some cases converged nicely, while others

impacted the moon, etc. Restricting the solution vector of these diver-

gent cases achieved convergent iterations, although many iterations are

needed to achieve final convergence. As shown previously, long data

arcs should be handled with the step fit technique, which does not require

a bounded solution.

As a final illustration of the use of a bounded solution, an AOP6

data arc curve fit is considered. The 6 _ perturbations in inclination and

node (5 ° , 12 ° respectively) are much larger than normal corrections to

these elements in a differential correction. As can be seen in figure 15,

a 45-minute data arc diverges if the solution is unrestrained but converges

with a bounded solution. The convergence rate is lower than the unre-

strained case; however, the smaller corrections lead to a successful con-

clusion, whereas the unrestrained solution is divergent.

A priori statistical information. --The distinction between the use of

a priori information as a statistically independent estimate of the state
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vector and as a technique to limit the solution vector needs to be clearly

made. The handling of the a priori, and indeed the normal equation, are

different in these two applications. Unfortunately, the same name is used

to describe both applications. In the first application, the a priori infor-

mation matrix reflects the confidence to be placed in the a priori state

vector estimate, while in the second application an arbitrary matrix of

numbers {of the appropriate dimension) is added, with no particular

physical interpretation, to the normal matrix to make the corrections

smaller. In the former case, the answer is the combined estimate,

including contributions from both tracking performance and a priori

knowledge. When the added matrix is used in a conditioning device, as

described in the second application, the final answer is not affected.

Suppose it is desired to estimate a parameter x, given two other

estimates of x, x I, and x Z with associated covariance matrices _I and

_2" The minimum variance unbiased estimate formed by a linear combi-

nation of x I and x 2 can be found by a simple construction.

More specifically, the problem is that of combining an a priori esti-

mate of the state vector, Xp, with the a priori covariance matrix, _p,

with a state vector estimate and covariance matrix obtained from tracking

information, x T and _DT. The handling of the a priori knowledge from

iteration to iteration, as the tracking estimate changes, must also be

considered.

Differential correction is based on a linearized equation relating the

first order differentials in the observations to the solution parameter

corrections,

8y = A (x- x R) + ¢ (26)

where y represents the observed minus computed residual, x R is the

state vector which is the basis for the linearization, x is the current state

vector estimate, and A is equal to the matrix of derivatives of observa-

tions with respect to the orbital parameters. The Weighted least squares

estimate, (xA - XR), of (x - XR) is then

A
x - x R = ATwA -IATwSy (27)
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This is also the minimum variance unbiased linear estimate when the

radar noise vector, n, has normally distributed, zero mean components,

and the weighting matrix, W, is equal to the inverse of the noise covari-

ance matrix; that is,

The combined estimate may be calculated from equation (26), given

the unbiased estimates and covariances matrices from a priori knowledge,

qp and _p, respectively, and x T and S T from tracking. For this purpose,

the observable becomes the state vector itself, and the residual becomes

the difference in the state vectors,

- x R

6y = and A =

Hence, rewriting equation (26), in terms of the combined estimate,

l{--IE: I- (x - xR) + - (Z9)

where np and n T are column vectors reflecting the errors in the a priori

and tracking estimates, respectively. From the definition of the covari-

ance matrix of a vector, the combined noise covariance matrix is written,

= E
E

I

I

P Ii _'T

(30)

pil _'T.... J [I;l] ......zTPI" ...._"T

(31)
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Assuming that the a priori estimate and the tracking estimate are

uncorrelated,

_PT = _TP = 0

equation (31) simplifies to

(32)

Using the following equivalences from the normal equation which is

accumulated to compute the tracking estimate

- 1 ATwA
1) 2]T =

and 2) 2]T-1 (x T . XR ) = ATwsy

We may rewrite (32} as

x x R ATwA + 2]p-1 '1- = (Xp

Since the above equation is to hold on each of several iterations

during which the reference state vector, x R, and the tracking normal

matrix _'T I, or ATwA, will be changing, a subscript notation is intro-

duced to indicate which iteration through the data was used to generate

the estimate. Equation (33} becomes,

. = (ATW6y)i ÷ Zp 1 Xp- XRi

(34)

For the first iteration, i

the a priori estimate.

= 1, the reference state vector is set equal to

XRl = xp
(35)
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Substituting into equation (34)

x- XRl = + _p 1 1 (36)

For all subsequent iterations, the estimates are combined as in equation

(34).

Statistical interpretation of the a priori covariance matrix.- Some

authors (reference (4)) raise objections to using an a priori covariance

matrix based on a guidance error analysis. The objection stems from

the definition or meaning of an error or standard deviation on a guidance

system component. Empirical estimates of an error on a particular

component are obtained by simulating flight conditions from which the

probability function is determined. Therefore the covariance matrix, Zp,

reflects estimates of the variances and covariances, i. e. , a statistical

average of all flights designed to achieve given nominal injection

conditions.

In order to weigh the covariance matrix properly, it should be

influenced by the particular flight at hand. Hence, any in-flight data

(prior to nominal injection) from the guidance system should be weighed

heavily in evaluating the a priori state vector and covariance matrix, Xp

and _,p. If a component failed, the a priori estimates could be consider-

ably different from the designed values.

Therefore, the use and validity of a priori estimates seems limited

to the early orbit determination of a space probe. Usually a very large

(pessimistic) covariance matrix, Zp is assumed, thereby reflecting an

initial solution which is unrestrained.

Many test cases were set up to determine the effects of an a priori

covariance matrix on convergence. The test cases were matched with

respect to the tracking situation, and were run in tandem -- one with a

priori information, and the other without.

A priori information, the covariance matrix listed in appendix A,

did not affect the convergence rate or the quality of the tracking estimate.

Inspection of the tracking normal matrix and the inverse of the a priori
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covariance matrix explains why the latter did not affect the solution.

Referring to equation {32), it can be seen that these two normal matrices

are added "(Zp-1 = 0, if there is no a priori covariance estimate). The

tracking normal matrix _ud the a priori normal matrix are tabulated in

table II and table III, respectively. When these two matrices are added,

the tracking normal matrix is unaffected to at least six decimal places.

The normal matrix for 3 minutes of tracking was included for comparison

purposes, as it _vas the smallest (in terms of the elements) available.

Because of the large uncertainties associated with only 3 minutes of

tracking, a much longer tracking arc is required for a solution with

acceptable uncertainties. A minimal tracking interval of 15 minutes,

with two sensors as determined in the aforementioned section, has a nor-

mal matrix with elements which are nearly an order of magnitude larger.

Hence, under these conditions, the accumulated normal matrix is unaf-

fected for at least seven leading digits by the a priori matrix. This

explains the negligible effect of a priori information on the convergence

tests.

TABLE II.--TRACKING NORMAL MATRIX, 3 MINUTES TRACKING,
TWO SENSORS

i. 13733E-3 5. 35534E-4 1.71139E-4 1.37027E-I 6.42346E-2 2.04928E-2

2. 53320E-4 8. 08864E-5 8. 91175E-2 4. 18096E-2 1.33252E-2

2. 60732E-5 3. 06943E-2 I. 43980E-2 4. 59554E-3

I. 13705E3 5.32808E2 1.69991E2

SYMMETRIC 2.49807E2 7.95205EI

2. 55474E 1

TABLE IIl.--A PRIORI NORMAL MATRIX

2.64890E-I0 -1.58197E-I0
2.51607E-I0

SYMMETRIC

-I. 36559E- I0
-I. 51674E- I0

2. 40516E- I0

3.23647E-8
2.60865E-8

3.05697E-8
7.37806E-5

2.60865E-8
2.10263E-8
2.46398E-8

-4.40631E-5

7.00810E-5

3.05697E-8
2.46398E-8
2.88744E-8

-3.80362E-5

-4. 22463E-5
6.69915E-5
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The effect of very optimistic a priori knowledge was simulated by

arbitrarily multiplying the elements of the a priori matrix by 104. The

tracking normal matrix was no longer insensitive to the addition of the a

priori matrix; however, since the modified a priori normal matrix

reflected very optimistic {and unwarranted) confidence in the initial esti-

mate, the differential correction converged to an erroneous state vector.

The associated covariance matrix reflected very small uncertainties; as

expected. Although the differential correction was convergent and the a

priori matrix was sensed in the normal equation, the technique is statis-

tically invalid. In fact, if the a priori covariance matrix is sufficiently

small, the program will ignore the tracking data, and return the a priori

estimate.

As was pointed out earlier, injection or deboost a priori informa-

tion has limited use unless it can be increased by, for example, tracking

during the deboost maneuver. The above results suggest that the use of

the existing pessimistic a priori knowledge amounts to relying on the

tracking for orbital improvement.

Normal matrix conditioning.--The use of an arbitrary matrix to

control the size of the corrections on each iteration is termed normal

matrix conditioning. The normal equation has the form

%1]x - x R = + {ATW6y) {37_

This is identical to the normal equation on the first iteration when using a

priori knowledge. With proper selection of _ - I the size of the correc-
P

tion can be limited, thus avoiding nonlinearities. However, this arbi-

trary selection of the conditioning matrix destroys the statistical signifi-

cance of the covariance estimate. The conditioning matrix has to be

selected by hand, as the solution is sensitive to the size of the elements

(normally diagonal). This constraint makes it undesirable to use in a

real-time operation. Appropriate conditioning matrices would have to be

found for all possible tracking situations; that is, for all orbital geome-

tries, data types, tracking intervals, etc. The bounds technique used in

the AT85 Orbit Determination Program is essentially an automated and

refined version of this procedure.
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At convergence, the gradient of the approximating quadratic sur-

fac e,

Grad (6y - Abx) T (6y - A6x) = 0

(syT6y _ 26xTAT6y + 26xTATA6x) 6x = 0
- _6x

= ATAsx- 2AT6y 5x = 0

= -2ATy : 0

Thus, it can be seen that equation (37), when used in a series of itera-
-1

tions, will give the same answer regardless of the value of _p , since,

at convergence, (i.e. , when the sum of squares of the residuals has been

minimized)

ATw6y __ 0 (38)

value of the coefficient (ATwA + _p-I) is irrelevant.Hence, the
-I

Although the converged value of the state vector is independent of Zp ,
-I

as shown above, the path to the solution is influenced by _p , the arbi-

trary conditioning matrix. The sum of the corrections may be written,

n

6x i

i=l

= constant (39)

where n is the number of iterations and

5x i = _ - xR i (40)

Therefore, from equation (39), it can be seen that the number of itera-

tions, n, required for convergence is not constant, but influenced by the
-I

choice of _ .
P

To illustrate the sensitivity of the solution of the normal equation to

various conditioning matrices, the convergence rates of a differential

correction with varying _.p" 1 matrices are plotted versus iteration num-

ber in figure 16. The control case (n = 0) had no conditioning matrix;
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the tracking situation; one sensor tracking for 60 minutes; the solution is

unrestrained. The elements of the diagonal matrix _io, the inverse of the

normal conditioning matrix {_p" 1), are indicated on the graph. Note that

the conditioning matrices cause an otherwise divergent situation to con-

verge, and at a rate depending upon the size of the elements.

3.3.3 Selection of Observational Parameters

Length of data arc.- The length of the tracking span is an important

variable in a convergence study, with respect to the quality of the initial

estimate, and also to the uncertainty of the converged estimate.

As can be seen from other sections of this report, the tracking span

strongly influences the convergence and convergence rates, other obser-

vational parameters being equal. The effect of varying the tracking span

as it applies to the various other factors affecting convergence is treated

in the resPective sections of the report.

One of the important characteristics of the differential correction is

the uncertainty associated with the tracking estimate or a combination of

the a priori estimate and the tracking estimate, as the case may be. The

covariance matrix of the unbiased weighted least squares estimate is

(ATwA) - 1. Referring to equation (33) of section 3.3. 2, it can be shown

from the definition of the covariance matrix, i. e. ,

(^ )(x )E A= E x- x R - XR T {ATw A) "1 {41)
X

that the covariance matrix of the combined estimate, a priori information

and tracking, is equal to

]Zx = A Tw A + % 1 1 {42}

where ATwA is the accumulated normal matrix from tracking and _p is

the covariance matrix of the a priori estimate.
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The interpretation of the covariance matrix is treated in section

3.4.2. As a relative measure of quality of the estimate derived from

tracking and/or a priori information, the standard deviation, i.e. , the

square root of the variance, of the components of position and velocity

are plotted as a function of the tracking situation.

The 1_ uncertainties in position and velocity (by components) as a

function of tracking span are presented in figures 17 and 18, respec-

tively. The definition of tracking span as it relates to the number of

observing sensors should be pointed out.

The visibility span of a lunar satellite for a particular sensor is

essentially equal to the time span during which the moon is above the

horizon at the particular sensor's location on the topos. Lunar occulta-

tion and the slight angular separation of the satellite from the moon's disk

are the two effects which will slightly influence the validity of the previous

statement.

Therefore, for a particular day, regardless of the lunar satellite

orbit orientation, the rise and set times for a given sensor of the satellite

are invariant. For the particular day in question, 27 June 1966, the visi-

bility times, by station are as follows:

Tracking Span
Stat[on Acquisition Set (Minute s )

Goldstone

Woomera

Madrid

4 h 0 m

4 h 0 m

14 h 40 rn

8h 45 m

16h 57m

285

777

Therefore, when comparing the relative state vector uncertainties

in figures 17 and 18, it should be kept in mind that there are two sensors

tracking simultaneously for the first 285 minutes only. Thereafter, only

Woomera can track the satellite until acquisition by Madrid at 14 h 40 m.

For example, with all three DSN sensors tracking, given the first

1000 minutes of data, there are two sensors for the first 285 minutes and

only one sensor for the rest of the span. Lunar occultation must also be
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considered. Therefore, the length of the data arc is not proportional to

the amount of data, unless there is less than I00 minutes of tracking

(from epoch), at which time the satellite is occulted by the moon.

Figure 17 clearly shows that the position uncertainties become quite

large with less than 15 minutes of tracking. The velocity uncertainties

are about 0. 1 m/s for 20 minutes of tracking as seen in figure 18. There

is some variation in the locus of the curves of figures 17 and 18 for the

alternate lunar satellite orientations. However, the curves included here

represent typical values.

Data type.--The effect of data types on differential corrections is

not very significant, when compared to the other factors affecting conver-

gence. Figure 19 illustrates the convergence history by iteration of four

data type configurations: I) range-rate only; 2) range only; 3) range and

range-rate; and 4) range, range-rate, and angles (right ascension and

declination). The convergence rates are about equal, requiring four iter-

ations to achieve convergence.

The 1_ uncertainties in position and velocity by components for the

four data type configurations is illustrated in figure 20. The range-rate-

only configuration is the only one which suffers any significant accuracy

when compared to the other data types. It should be noted that adding

angular data to range, range-rate data does not affect the convergence

rate nor the quality of the tracking estimate.

The next section is concerned with the number of observing sensors.

Since one sensor only has been shown to be inadequate (using range,

range-rate data), angles were added to determine if it would improve the

differential correction to relatively acceptable (i.e. , two sensor) stand-

ards. As in the two sensor situation, the convergence rate was unaffected.

Similarly, the 1_ uncertainties were virtually unaffected, the addition of

angular data improving the tracking estimate negligibly. The uncertain-

ties are tabulated in Table IV.

Number of observing sensors.--From the point of view of geometry,

orbital improvement of a lunar satellite orbit by means of a differential

correction can become ineffective. During the relatively brief period of
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TABLE IV.--THE EFFECT OF ANGULAR DATA ON STATE VECTOR

UNCERTAINTIES

State Vector

Component

X

Y

Z

:?

Y

Data Set

18. 873

81. 638

133. 710

R, Rplus _, 6

18.861

81.598

133.670

.01351

.05095

.07504

.01350

.05094

.07503

tracking the satellite before it goes behind the moon, the relative posi-

tions of an earth-based sensor and a lunar satellite, at a distance of about

60 earth-radii, are limited. This single sensor geometry restriction

gives rise to conditions in which the orbit is difficult to establish; the

orbital path is not well determined, geometrically.

The addition of a second sensor to the tracking network greatly

enhances the geometry of the situation. In a sense, the two sensors

provide the basis for a triangulation determination. Max/mum sensor

separation provides the best geometric determination, but there is a

simultaneous tracking constraint which must be considered. However,

since a few hours of simultaneous tracking is adequate to perform a con-

vergent differential correction with small uncertainties, a relatively

large sensor separation is possible, thus permitting a mathematically

dete rminate senso r- s atell[te triangulation.

Geometric indeterminacy is reflected in the uncertainties in the

estimate as described by the tracking covariance matrix. The uncertain-

ties in the components of pesition and velocity for short tracking intervals

is presented in figures 21 and 22. Especially significant (figure 22) are

the relative velocity uncertainties for the one sensor determination and

61



105
8

6

4

,o_8 ""_,_
4 _ \ _ Position vector

_ _ _" _c
_ \ omponen t

One sensor

103
8

_ 6 _

'£ 4

" _. _Two sensors

2 -'__..._.__&z

,°_8--------_ __ __ _
6 _

X

4

2

101
0 20 30 40 50 60

Tracking interval, rain

FIGURE 21.--POSITION UNCERTAINTIES USING ONE AND
TWO SENSORS FOR SHORT ARC FITS

62



-O

E

c-

O

103

6

4

2

102

8:

6
4

101

8

6

4

2

10 o

8

6

10-1

8

6

2

10-2
10

\

"__Two sensors

20 30 4O 50 60

Tracking interval, m_n

FIGURE 22.--VELOCITY UNCERTAINTIES USING ONE AND

TWO SENSORS FOR SHORT ARC FITS

63



the two sensor configuration. The single sensor uncertainties are

approximately two orders of magnitude larger.

Equal total amounts of data from one sensor and two does not result

in equally determinate systems. In figure 23, one sensor uncertainties

for 30 minutes and 60 minutes of tracking are compared to 15 minutes and

30 minutes of tracking with two sensors. There are equal amounts of

data in the determination of each situation. However, the triangulation

aspect is missing in the single sensor configuration. Adding angular

data, right ascension, and declination to range and range-rate informa-

tion in a single sensor configuration hardly affects the tracking estimate

uncertainties, as can be seen in table IV of section 3.5. 3.

The mathematical indeterminacy of the single sensor configuration

results in the ill conditioning of the normal matrix. There are several

ways of measuring ill conditioning of matrices. One method is to com-

pare the right inverse with the left inverse, or the double inverse. The

correlation matrix is printed with each iteration summary in TRW Sys-

tem's AT85 Orbit Determination Program. The correlation matrix is

simply a triangular matrix of correlations, derived from the tracking

covariance matrix, (ATwA) =1. Correlations greater than _1 are indica-

tive of an ill-conditioned matrix. When ali observations are confined to

information in a single line or plane due to observing geometry, the

result is the inability to solve for certain linear combinations of the data.

This results in an ill conditioned normal matrix, which in turn is

reflected in its inverse, the covariance matrix, from which the correla-

tions are derived. Many one sensor test cases had ill conditioned

matrices, which, as pointed out above, is indicative of indeterminate

tracking geometry.

In summary, simultaneous tracking from two stations is required in

a differential correction of a lunar satellite. This is especially critical

when performing the first differential correction after deboost into lunar

orbit. The one sensor tracking configuration is geometrically indeter-

minate in terms of expected uncertainties when performing a differential

correction.
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3.4 CONVERGENCE OF ALTERNATE LUNAR
SATELLITE ORBITS

This portion of the study is concerned with the effects of observing

the lunar satellite orbit in different orientations; that is, with different

inclinations and longitudes of the ascending node. The alternate lunar

satellite orbits are listed below for convenient reference.

TABLE V. CLASSICAL ELEMENTS OF ALTERNATE

LUNAR SATELLITE ORBITS

Orbit

code

B1

BZ

B3

B4

B5

B6

B7

2788

2788

2788

2788

Z788

2788

Z788

e

0. Z869

0. Z869

0. Z869

0.2869

0. Z86 9

0. Z86 9

0. 2869

0 o

30°

45 °

60 °

15°

15°

15°

25.047

25.°47

Z5.°47

Z5.°47

I0.o

90. °

130.°

1Z.°46

12.°46

12.°46

1Z.°46

12.°46

12.°46

1Z.°46

M

0.0

0

0

0

0

0

0

T O = 27 June 1966, 4h 0m 48. s

The classical elements listed in table V served as the initial condi-

tions for the differential corrections. Observational data was simulated

for a 3_ energy perturbed orbit and for a 3_ orientation perturbed orbit.

Since this was the final phase of the convergence study, and considering

the large number of different orbits, many of the convergence techniques

which proved successful in the main portion of this study were used in

order to maximize the convergence probability. Energy corrected initial

conditions were used for the energy perturbed cases, and abounded solu-

tion constraint was imposed on the orientation perturbed cases. All cases

had simulated data for 60 minutes from two sensors tracking simultane-

ously. Each graph in the following sequence (figures 24 through 30) is a

convergence summary of two cases; representative of a particular lunar

satellite orbit orientation. The two cases consist of (1) observing an

energy perturbed orbit (3=) and having energy corrected initial conditions;
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and (2) observing an orientation perturbed orbit (3_) and starting with

nominal (unperturbed) initial conditions. The energy perturbed orbit has

a period of 340 minutes (nominal is 220 minutesl, although this error is

removed with the energy correction. The orientation perturbed orbit has

an average error of 2.°5 in inclination, 7 ° in longitude of the ascending

node, and virtually no energy error.

The orbital data code on the graph consists of nominal orbit code,

type of perturbation and magnitude of perturbation. For example, B3OP3

is interpreted:

B3 = nominal orbit, B3

OP = orientation perturbed (EP = energy perturbed)

3 = magnitude of perturbation, 3_

For all lunar satellite orbit orientations, the differential correction

of the orientation perturbed orbits did not converge as rapidly or as easily

as the energy perturbed orbits. This can be attributed to the fact that the

energy perturbed cases have an improved (over the nominal) initial esti-

mate, whereas the orientation perturbed cases have no equivalent

"orientation correction" to the nominal estimate.

All lunar orbit orientations converged successfully with the excep-

tion of the B7OP3 orbit, figure 28. This exception can be attributed to the

fact that the satellite was occulted by the moon for 45 minutes of the 60

minutes of data, beginning two minutes after tracking began. The identi-

cal case with 300 minutes of tracking converged successfully. Since all

the lunar satellite orientations covered presented no difficulties with 60

minutes of tracking, the step fit technique could be used to incorporate

any additional data. In fact, subsequent differential corrections starting

with the converged state vector of a 60 minute data fit would require rela-

tively few iterations, as the uncertainties in the 60 minute fit (with two

sensors tracking) are very small. See section 3.3.3. i.
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3.5 NUMERICAL AND STATISTICAL ASPECTS

OF THE CONVERGENCE PROBLEM

3.5. 1 Conditioning of the Normal Matrix

There are three major sources for poor numerical conditioning:

le All observations restricted to either a linear or planar

geometry (because of the observing situation).

_° The accumulation of a large number of partials in single

precision.

. High correlations between the separate elements of the

state vector because of secondary dependence on some

well determined implicit parameter such as period.

The first and third sources arise from physical considerations; the second,

from numerical limitations in the computer.

The first source, the restricted observing geometry, has been the

most common source of poor numerical conditioning in this study. Some

authorities (reference 5) have shown that iterations can converge in the

presence of computation and round-off errors even if the inverse of the

normal matrix has less than one significant figure; this is derived under

the assumption that the iterations converge rapidly when calculated in

"infinite precision."

Several examples of convergent iterations despite poor numerical

conditioning were encountered in this study. In general, a one-sensor-

only tracking configuration with a bounded solution vector produced con-

vergent iterations, though the inverse of the normal matrix had correlations

greater than ±1 and negative variances. Figure 31 illustrates the succes-

sively convergent iterations of a one-sensor-only fit which had poor

numerical conditioning in every iteration.
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An illustration of poor numerical conditioning because of the accu-

mulation of a large number of observations was encountered when a differ-

ential correction, with no error in the initial estimate, was attempted

using 10 revolutions of data (55 hours of tracking with the three DSN

sensors). The solution vector was appropriately small (negligible when

addedto the initial estimate), although the inverse of the normal matrix

had negative variances and correlation coefficient greater than ±1.

3.5.2 Statistical Interpretation of the Inverse of the
Normal Matrix

The orbit determination problem as posed and solved by the method

of least squares, for any given set of tracking data, converges after

iterating to a unique estimate of the orbital parameters. But the original

tracking data contains random noise, biases, systematic errors, and

miscellaneous anomalies which most certainly cause the estimate to differ

from the "true value", a value which unfortunately can never be obtained.

The estimate is a single sample drawn from the population of solutions

which would arise if the error sources at the measuring instruments

(i. e. , tracking radars) could somehow be allowed randomly to fluctuate

through their physically permissible ranges. But, since a satellite only

goes by once per pass, the errors which arise on that pass are aunique

set, a single sample from an experiment that cannot be repeated.

For planning or operational purposes, we would like to have an idea

of the uncertainty in our estimate, that is, we would like to have a

statistical description of the solution. The standard form for multi-

variate normal distributions, standard deviations and correlations for the

estimated parameters may be obtained when certain conditions are satis-

fied. Briefly, the restrictions are that the errors in the tracking data

must be normally distributed with mean zero and have a known standard

deviation. (For most practical orbit determination programs, the errors

must also be uncorrelated. ) Biases in the tracking data must not exist,

or else be solved for. The acceleration and perturbation models affecting

the spacecraft motion either must be perfectly known, or else the unknown

parameters in the acceleration model must also be solved in the least
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squares solution. Within these restrictions, the covariance matrix may

be derived by applying the expectation operator to the least squares esti-

mating equation.

The weighted least squares estimate of the state vector may be

written

5x E = (ATwA) -1 ATw 5y (43)

where the residual vector

6y = A6x A + n (44)

Using the equation for the residual vector (equation 44),

6x E = (ATwA) "I ATw(A6x A + n)

= 5x A + (ATwA) -I ATwn

5x E

The mean of the error in the estimate is the expected value of

- 5x A, i.e.,

E(6x E - 6XA) = (ATwA) -1 ATwE n (45)

If we assume zero mean observational noise, i. e. ,

E =0
n

equation (45) becomes

E(Sx E - 6XA) = 0

Thus the weighted least squares estimate is an unbiased estimate.

The covariance matrix of the estimate may be written (again using

the expectation operator),

E(Sx E - 5XA) - E(Sx E - 5XA) (Sx E - 5x A) - E(Sx E - 5xA)T
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or, since the error in the estimate has zero mean,

E(Sx E - 5XA)(6x E - 5xA)T = (ATwA) "1 ATwE T WA(ATwA) -1
nn (46)

The matrix E(nn T) is the covariance matrix of the observational

noise. If we now make the assumption that the least squares weighting

matrix is equal to the inverse of the noise covariance matrix,

W "1 = E(nn T)

equation (46) becomes,

E(Sx E - 6XA)(6x E - 5xA)T = (ATwA) -1 (47)

Thus, under certain assumptions, the diagonal elements, aii, of

(ATwA)-I are the variances of the corresponding elements of the solution
i

vector, 5x E, and the off-diagonal elements, a.., are the covariances of

_13i 5x j .the corresponding solution vector elements, ox E and

For a two dimensional solution vector, the covariance matrix would

have the form

(ATwA)- I

Z

_1 PlZ°-l°-Z

Z
PlzO-lO-Z o-Z

2
where _i is the variance in 5XiE (the i TM component of the solution vector)

• 2 = E(SXE, 5xl)whose true value is 5xI, i.e., _i = E(6XE-6XA)Z'. Pij_i_j

(6xj-Sx j) is the covariance between 6xiE and 6x_. The coefficient Pij is

called the correlation coefficient between 5xE and 5x j.

The criteria which must be satisfied in order that this be true are:

a) The observational noise is unbiased, or else the non-zero
biases are included in the solution vector. This is the

assumption which allowed writing the covariance matrix in
the form in equation (46).
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b)

c)

The observational noise is uncorrelated and the variances

of the observations are known a priori and are used in the

weighting matrix. This requirement arises from the com-

puter implementation of the program, rather than from any

assumptions made in the theory; recall that in deriving
equation (47) we required only that E(nn T) = W -1. In case

the observational errors are correlated, an "equivalent-or-

worse" variance may be used in weighting observations,

resulting in a value for (ATWA) -1 which is an upper bound

on the actual covariance matrix (see reference 6).

The mathematical model of the orbit and the observations is

correct, and allparameters (biases, station locations,

physical constants, etc. ) which do not appear in the solution
vector are known exactly.

When these criteria are met, the weighted least squares solution is

also the minimum variance unbiased estimate of the parameters to be

solved for. Obviously, these criteria can never be met exactly in any

real tracking problem. When they are not met, (ATwA) -1 is to that

extent an incorrect estimate of the actual covariance matrix.

Perhaps the most common departure from the criteria listed above

occurs under item c, where uncertainties in the knowledge of the mathe-

matical model (systematic errors) destroy the statistical significance of

the inverse of the normal matrix.

These systematic errors (as opposed to random radar observational

errors), if not accounted for, may lead to unrealistic results. Examples

of important systematic errors are observing station location uncertain-

ties, data biases, and uncertainties in the constants which define the

atmospheric and gravitational models. The effects of systematic errors

may be accounted for by either a) increasing the dimensions of the solu-

tion vector to include the systematic errors (i.e., solve for the errors)

or b) maintain the dimensions of the fit (solve only for position and the

velocity) but include the degrading effect of systematic errors on the posi-

tion and velocity covariance matrix (i. e. , consider the effects of the

errors). It can be shown that the covariance matrices,

23random < 23solv e < 2_consider
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i. e., that the "solve" case is bounded by the random and consider

covariance matrices. In the consider case, of course, the estimate

itself is not changed from the value that would be obtained from a random

only fit. Only the covariance matrix of position and velocity is degraded

to reflect increased uncertainties. It has been found that if the presence

of systematic errors is recognized, but their effects are not accounted

for (by not solving for them), the solution for the parameters of the orbit

can have large errors in comparison to the case where these systematic

errors are solved for. Consequently, portions of this study should be

repeated with an expanded state vector to study the effects of the lunar

gravitational parameters on the quality of the estimate of the orbital

elements.

However, the covariance matrix can serve as an indication of the

relative quality of two similar least square fits, even in the presence of

systematic errors; in this case the matrix should not be interpreted as a

statistical description of the state vector.

In the situation where there is sufficient confidence that the assump-

tions listed above have not been seriously violated, the covariance matrix

will give an indication of the confidence to be placed in the estimate.

That is, the estimate itself is a random variable (since it is computed

from observations containing random errors) with zero mean, and its

quality will be proportional to the variance. Various tracking situations

can be evaluated by noting the variances in the estimates of the solution

vector components. A good example of this comparative use of the

inverse of the normal matrix is provided by the study of one versus two

station tracking (section 3.3.3). The two station differential corrections

have small variances, and have a high probability of giving an estimate

very close to the actual state vector. The one station fits, on the other

hand, have large variances, and may converge to solutions with large

errors compared to the actual state vector. For example, if the solution

vector had only a single component, the variances could be interpreted as

shown in the sketch on the following page. For this hypothetical one-

dimensional differential correction, 67 percent of the estimates for each

of the tracking situations will lie with ±1_ of the mean. Since _2 << _1' the
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Two observing sensors

One observing sensor

± a2

8X E - 8X A . 9

probability that the estimate will be within a given distance from the mean

(which is the correct answer under the assumptions detailed above) is

much greater for the two station case. When designing a tracking pattern,

the aim is to make these distributions as "sharp" as possible, i.e.,

decrease the variances in the estimate of the state vector. Note that

increasing the precision of the computation is not going to significantly

improve the quality of the estimate from the one station differential

correction.

There may be small changes in the magnitudes of the variances as

information which may have been lost in roundoff noise is brought into the

problem, but the basic "flatness" characteristic of the estimation (the

least squares operator) remains. That is, the estimate will still be a

random variable with a large variance, and may consequently give a poor

answer, i.e., an answer which minimizes the sum of squares, but possibly

far from the actual state vector. Although not a contributing factor in the
q
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current study, a special case to beware of appropriate to this heading is
when the solution vector is less than the full position-velocity state vector.

For example, it is feasible to solve for velocity change only at the time of

a burn to estimate the velocity gained during the burn. This assumes that

both position and preburn velocity are known from tracking data prior to

the burn, and that tracking data after the burn have also become available.

Then an abridged solution vector can get the best estimate of the velocity

gained solved from postburn data, but will not include the uncertainty in

velocity due to the uncertainty in the original position.

The orientation of the reference axes. -- The solution vector has

been taken to be the position and velocity of the spacecraft represented

in a particular cartesian coordinate system. The full covariance matrix

accordingly is as follows:

2

_x _xy _xz _x± _x9 _x_

Z

y yz yfl y_ y_

SYMMETRIC

2

?
0-. O-- . 0-. •

x xy xz

0-° 0-° •

y yz

2
0-.
Z

The orientation of the cartesian axes is usually accidental with regard to

how "interesting" the resulting positional uncertainties might be. For

example, the cartesian z axis is typically aligned with the earth's axis,

and the x axis is oriented in the direction of the vernal equinox. By con-

trast, the radar sees range and range-rate, the high accuracy measure-

ments, in the direction of the moon, and its low accuracy angular

measurements normal to the earth-moon line. Correspondingly, if we

were tracking a short arc of data across the face of the moon, we could

estimate the uncertainties we might expect to see in the radar coordinate
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system, i.e. , that which is natural to the observations. But without a

special rotation we would not be able to estimate the uncertainties we

might expect in the accidental cartesian frame.

To put the covariance matrix to convenient use, it is often desirable

to consider the uncertainties in a coordinate system different from the

original coordinate system. The new system may be either a differently

oriented cartesian system, or an entirely different reference such as the

classical elements or the polar-spherical position and velocity. In any of

these cases, the covariance matrixmay be directly transformed by pre-

multiplying by the transform matrix that carries the original coordinates

into the new coordinates, and post multiplying by the transform of that

matrix. This is shown by referring back in section 1 above, equation (47).

E(6x E - 6XA)(Sx E - 6xA)T = (ATwA) -1

Let the matrix which carries 5x E to 5y E be B, i.e.,

6y E = B 6x E

5y A = B 5x A

Then the expectation referred to the new coordinate is Ey

Ey = E(Sy E - 5yA)(6y E - 6yA )T

= E(6Bx E - 5BXA)(6Bx E - 5BxA)T

= E(B(Sx E - 5XA)(Sx E - 5xA)TBT )

= B(ATwA} -I B T

Thus as long as B is a linear operator, this rotation may be made.
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The following coordinates have been occasionally used to reference

the uncertainty of the position and velocity determinations:

i)

z)

3)

4)

5)

Vehicle centered cartesian: axes oriented with the earth's

axis and the line to the vernal equinox (x y z)

Vehicle centered cartesian: axes oriented with the space-

craft velocity vector and the line normal to the orbit plane

(STW)

Vehicle centered cartesian: axes oriented with the line to

the central body and the line normal to the orbit plane (UVW)

Classical osculating elements (a e i _2 M)

Central body centered polar (velocity - spherical (position)

coordinates (Azimuth angle, flight path angle, and magnitude

of velocity vector; right ascension, declination, and magni-

tude of position vector)

It is also possible to examine the uncertainty in single parameters, such

as pericynthion distance, velocity at some latitude crossing, etc. If this

is desirable, the rotation to these single components may be made.

Partitions of the covariance matrix. --The covariance matrix shows

the covariances between position and velocity elements. These "phase-

space" correlations reflect the important orbit determination phenomenon

that the energy of an orbit is as well determined as the period (assuming

perfect knowledge of the mass of the central body). Since the energy is

related only to the position (potential) and velocity (kinetic), if energy is

well known, then position and velocity are strongly correlated. As a

vehicle revolves on its orbit, the uncertainty is exchanged back and forth

between position and velocity. The greater uncertainty rests with the

relatively larger component, i.e., at pericentron velocity (with respect

to the central body) and velocity uncertainty are highest and at apocentron

position (from the central body) and position uncertainty are highest.

Thus the interpretation of magnitudes of position and velocity uncertainty

must be tempered by knowledge of the vehicle's position on its orbit.

The correlations between position and velocity may be disregarded

and the full 6 x 6 covariance matrix may be examined as a pair of smaller

3 x 3 covariance matrices in position and velocity respectively. Aside
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from the consideration of the foregoing paragraph this is always valid.

The isolated smaller matrices may be rotated and examined for all pur-

poses as long as they are not propogated to a different position (or time)

along the orbit.

The smaller matrices obtained by simple partitioning are to be

interpreted as the uncertainties and covariances which would be obtained

when the complementary part is left unrestricted. For example, the par-

titioned off position 3 x 3 submatrix is the set of uncertainties obtained as

velocity takes on all possible values; it must not be interpreted as that set

of position uncertainties obtained for velocity limited only to the value

appearing in the solution. The position uncertainties obtained by parti-

tioning the full 6 x 6 matrix are typically greater than those obtained by

omitting velocity,from the solution vector and thereby obtaining the posi-

tion uncertainties associated with a fixed velocity. This paragraph is

referring in general to the distinction between conditional and marginal

distributions; this topic will be discussed further in section 8 below.

Interpretation of the covariance matrix as an ellipsoid. -- A homo-

geneous expression of the second degree, of the form

F = all xlZ + aZzX2 +... +a x 2
nn n

• . . x x (48)+ 2a12 Xl x2 + 2a13 xl x3 + + 2an-l' n n-i n

is called a quadratic form in Xl,X 2 . . . x . In two-dimensional space,n

the equation F = constant represents a general second-degree curve

(conic) with center at the origin. For example, in the analytic geometry

of conic sections, the equation of an ellipse is usually given in the form

2 2

Ul + u2
2 2

b 1 b 2
1 b I, b z real.
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If the coordinates are rotated by an angle _ so that

= x cosy - x Z sin_/Ul 1

u Z = x I sin_ + x Z cosy

then

( 2 )2cos N + sin Z _/ Xl +

+ 2(-l+_zz)sin_(\bl cos_ XlXz +

sin Z Z ) Z
_/+ cos _ x2

and simple functions of ¥, b I and b Z may be identified with all, aiz, and

aZZ. Under certain restrictions on the quadratic form, it is always pos-

sible to rotate to the axes where the standard form of the ellipse is

evident.

In three dimensional space the equation F = constant represents a

general quadric surface with center at the origin. Taking an example

from solid analytic geometry, the equation of an ellipsoid is generally

written

2 Z 2

x_.__+y +___= 1
a Z b Z c

a, b, c real (49)

A similar rotation principal applies.

This equation can be easily generalized to an arbitrary number of

coordinate directions

2
k I x_ + k2 x_ + k3 xZ +" " " +)_n Xn = 1 (50)
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where the different letters x, y, z have been replaced byx 1, x 2,. . . x n,
and the constants a 2 b 2 Z

, , c .... have been replaced by 1/k 1, 1/k 2 ....

1/x
n

Equation (50) can be thought of as an ellipsoid in n-dimensions; the

fact that n is now greater than three, and the ellipsoid has lost a realistic

physical interpretation is of no consequence, since the rule for writing

the equation is well known and a simple analog to the realizable case.

The correspondence between algebraic quadratic forms and an

equivalent matrix-vector notation can be shown. If x is an n-dimensional

column vector, and

A=A T =
ali alZ aln ]

l!

a22

symmetric
ann

the quadratic form of Equation (48) can be written

F = xTAx (51 )

If the matrix A satisfies the criterion that it be positive definite,

e. , that IAI > 0, then the quadric surface defined by A is an ellipsoid.

m m

i.

In the theory of covariance matrices (ATwA) -1 the inverse of the covari-

ance matrix, the so-called information matrix or normal matrix ATwA

has precisely the necessary properties (except in ill-conditioned situations).

It is identified with the A of the immediately preceding development. Thus,

the quadratic form

xTATWAx = C 2

defines an ellipsoid whose shape is determined by ATwA and whose scal-

ing, or size, is determined by C 2.

Eigenvalues of the ellipsoid. -- If one is interested in studying the

properties of an ellipsoid, it is reasonable to immediately select a coordi-

nate system in which they are most efficiently displayed. A natural choice

here would be to align the axes of the coordinate system with those of the
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ellipsoid. However, in most engineering problems the problem of an

ellipse or ellipsoid is not encountered in this manner. We normally have

a coordinate system selected by some other considerations (the usual

choice in orbit determination is the equatorial plane-vernal equinox sys-

tem), arld the ellipsoid when it appears in this reference frame will be

rotated to some arbitrary orientation. The properties of the ellipsoid in

this system may be observed. In the equations (49) and (50) above, this

skewness would be indicated by cross terms of the form xy, yz, xz, so

that in three dimensions the equation for the ellipsoid would have six

terms instead of three.

Given that the properties of the ellipsoid are of interest, the prob-

lem becomes one of determining the principal axis of this quadric surface.

If the equation for the surface is already in the form of equation (60),

then the principal axes will be in the coordinate directions x l, xz,.., x ,n

i. e., we are very fortunate in that our coordinate system axes already

coincide with the principal axis of the surface. Normally, however, this

is not the case and we must compute the principal axes.

It is instructive to consider the meaning of the term principal as it

modifies axis. Construct at every point on the surface a normal vector,

i. e., a vector which is orthogonal to the plane tangent to the surface at

that point. A vector from the origin of the coordinate system to this

arbitrary point will not generally be parallel to the normal. Only in

special directions, namely in those directions in which the ellipsoidal

equations are simplest (i.e., contain no cross termsi, does it happen that

r and n are parallel. These special directions are called the principal

directions and form the basis for the principal axes. Alternately the

principal axes are the line intersections of the planes of symmetry of the

ellipsoid.

An algebraic definition of the principal axes describes them as those

vectors u i which, when premultiplied by the matrix A (associated with the

quadric surface), generates a new vector b which is parallel to the origi-

nal vectors u.. That is,
I

Au. =b. =k u 1
i i (5Z)

where k is a scalar constant.
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If Equation (5Z) is rewritten as a homogeneous equation, i.e. , with

zero on the right hand side,

(A-k)u --0 (53)
1

or, written out in components (letting u i consist of the components U.ll,

uiz,.. • , Uin),

(all - k) Ull + alZ ulZ +.. • + aln • Uln = 0

a21 u21 + (a22 - k) u22 +... + aZn URn = 0

anl Unl + an 2 Un2 +... (ann - k) Unn = 0

A nontrivial solution (i. e. , the only solution other than the vanishing

of all x's) to this set of n homogeneous linear equations in n unknowns

exists only if the determinant

IAJ

all -k

a21

%1 an Z " " " ann -k

=0

Expanding this determinant gives the characteristic polynomial of A,

k n + C kn-1 + C kn'Z +... + C = 0
n-I n-Z o

th
This n order polynomial has n roots k 1, k Z,. . . , kn, and it can

be shown that for a real symmetric matrix (such as a covariance matrix)

the roots are all real• To every possible k = k 1, a solution to the homo-

geneous set, equation (53) can be found• These define the ui's, called

eigenvectors and represent the n distinct directions in space described

above, i.e., the principal directions• The k i associated with u i is

called the eigenvalue.
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The geometrical significance of the eigenvalues of the covariance

matrix can be found through a simple analysis.

Returning to the fundamental equation of eigenvalue analysis

Ax = kx

and recalling that the quadric surface, F, can be represented by

TAxx = 1

(54)

we can write (multiply equation (54) by x),

TAx =x = kx Z 1

and

Z 1
X ------

k

Since

2 Z 2 2 2
+x_ + . +x = rx =El z " " n

is the square of the distance to the point where the principal axis inter-

sects the surface, the eigenvalue k I may be interpreted as the reciprocal

of the square of the distance from the center to the surface at the point

where the corresponding principal axis penetrates the surface.

A large eigenvalue means that in the direction of the associated

eigenvector (principal axis) the quadratic surface comes near to the

center. A small eigenvalue means that in the direction of the associated

eigenvector, the surface stays far from the center.

Since the surface of interest here is represented by the quadratic

form of equation (51), in which the matrix A has been replaced by _ -l

the distance of approach of the surface to the origin along any principal

direction is directly proportional to the square root of the eigenvalue of

for that direction.
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Probability density function interpretation of an error ellipsoid. --

The least squares estimation in the differential correction procedure

results in an estimate of the mean correction 6x E to be applied to the

already available estimate of a spacecraft state vector x D. The foregoing

discussions show how the (ATwA) - 1 matrix may be identified (with reser-

vations) with the covariance matrix _ of this estimate. Another applica-

tion of these parameters is to estimate the probability one has that the

"true value" of the state vector lies within some volume of phase space in

the vicinity of the newly estimated position. The probability is derived

from the multivariate normal probability density function which is closely

related to the error ellipsoid. This multivariate pclf is given by

f(Sx A) = [(z_)nl2_l] -

llz
e-I/Z (6XA . 5xE)T $-i (6XA _ 6XE)

6x A : col(SXAl , 5XAg ..... 5XAn)

If the estimated correction 5x E is applied to the available estimate x D,

then the dispersion of the actual correction about the estimated correction

becomes the same as the dispersion of the actual state vector about the

newly computed best available estimate x E = x D + 5x E. Hence the pdf for

XActual = x A =x E +x

]-I/Z -IIZ xE)T 2_-If(xA - x E) = (Z_r)n Iml e (xA - (xA - x E)

or

f¢xl= lCZ-In Isll-llZ -I/Z -1e xT23 x

The integral of the pdf over all of n-space is unity. The integral of

the pdf over any finite (or semi finite) region of n-space is the probability

that the spacecraft is located within that region situated relative to the

estimated position x E. It is exceedingly difficult to integrate this pdf

over arbitrary volumes of 6-space, and tabular methods such as may be

used in the one or two dimensional cases are not generally available. An

abridged but fairly useful 3-space tabular approach has been published
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(reference 7), but higher dimensional aids are not known to the authors.

However, with the partitioning between position and velocity permitted, it

is not necessary to consider more than three dimensions at once.

Partitioning leads to the separate questions: i) How well is velocity

known if position is disregarded ? and Z) How well is position known if

velocity is disregarded? By disregarded is meant that the parameter

takes on all possible values. We cannot, with the partitioning approach,

ask the question "What is the probability that velocity is within this much

of estimated value, provided also (= conditional upon) that position within

certain boundaries has been achieved. In critical cases this may be a

valid question, but present practice is not adequate for quick correct

answers.

A request is often made to examine the I, Z, or 30- ellipsoid. This

is on the surface a legitimate request, but the 10- ellipsoid can be mis-

takenly interpreted if the dimension of the solution vector is not considered.

As the number of elements in the solution vector and the dimension of the

corresponding error ellipsoid increase, the probability that all components

simultaneously be within one standard deviation of the estimated state

vector decreases sharply. The problem is further complicated (but less

aggravated) by high correlations between the solution parameters. Most

engineers have a feeling for the statistics of one variable, where 10-

means 68% probability, 20- means 95% probability, and 30- means 99+%

probability. This rule does not apply to cases where there are more than

one variable. The following table compares I, Z, and 3 dimensions.

Probability that all variables are within no- from

the estimate (assuming independent variables).

n

No. of 0-'s 1 variable Z variables 3 variables

10- 0.68 0.48 0.20

Z0- 0.95 0.85 0.75

3_ 0.99 + 0.99 0.97

The confidence interval concept can also be applied to higher dimen-

sions. The following table summarizes its application up to dimension 3.
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P

0.25

0.50

0.75

0.90

0.95

0.99

Confidence Limits in C Standard Deviations

The probability is P that all n variables
are less than c _'s from the estimate.

1 variable

0 3

0 7

1 2

1 7

I 9

Z6

2 variables

0.76

1.2

1.7

Z.l

2.4

3.0

3 variables

1 1

1 5

2 0

2 5

2 8

3 4

3.6 LRC/TRW TEST CASES

Langley Research Center (LRC) supplied TRW Systems with four

(4) test cases which were run on Jet Propulsion Laboratories' Single Pre-

cision Orbit Determination Program, (SPODP). Cases I and II were run

on TRW Systems AT85 Program. Case III was not run as the tracking

data was fc3' coherent three-way integrated doppler frequency, an obser-

vation format which is not acceptable in the AT85 Program. Case IV was

identical to Case II.

Case I

The pertinent input information to this case is as follows:

1. Epoch Time: Z7 June 1966, 4 h 59 m 49.583 s

2. Initial Conditions: See iteration summary

3. Tracking: One sensor (Goldstone) for 31 minutes;
Range and range-rate data

_R = 20 m. bias = 40 m

_ = 0.02 m/s

Solution Vector: Q, 6 x 1 vector of Cartesian components of
position and velocity: x, y, z, x, y, z

s
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Q

X

y

Z

. Other : Pessimistic a priori covariance matrix

Unrestrained Solution (No bounds)
One iteration

TABLE VI. ITERATION SUMMARY, LRC TEST CASE I

Delta Q Old Q New Q

-0.55958147 E 0Z -0.33309137 E 06 -0.33314732 E 06

0.57432841 E 02 -0. 15951624 E 06 -0.15945880 E 06

0.17323176 E 03 -0.51329038 E 05 -0.51155806 E 05

-0. I0354523 E 00 -0.37497834 E-01 -0. 14104306 E 00

0.33810762 E 00 0.85750411 E-01 0.42385804 E 00

-0.33123248 E 00 0.63568708 E 00 0.30445459 E 00

Q

X

Y

Z

TABLE VII. ITERATION SUMMARY, TRW TEST CASE I

Delta Q* Old Q New Q

-0.33707289 E 00 -0.33309137 E 06 -0.33309169 E 06

0.37816917 E 00 -0. 15951624 E 06 -0. 15951585 E 06

0.69214746 E 00 -0.51329038 E 05 -0.51328341 E 05

-0.34459841 E-03 -0.37497834 E-01 -0.37844620 E-01

0. i1340711 E-0Z 0.85750411 E-01 0.86883255 E-01

0. 12165384 E-02 0.63568708 E 00 0.63446997 E 00

"Delta Q, which is the correction to the state vector, Q, called for by

the solution to the normal equation, is in mean of 1950. 0 coordinates.

The results of the test case are summarized in table VI (LRC

version) and table VII (TRW version). Since there was no error in the

initial estimate, the corrections (Delta Q vector) should be negligible, or

zero. The SPODP version made corrections of over 100 km in position

and 500 m/sec in velocity. The TRW Systems AT85 Program made small

corrections of 1.0 km and 1.0 m/sec. Nevertheless, the uncertainties of

the tracking covariance matrix were of the order of 25 km in position and

50 m/sec in velocity. Because of the poor tracking geometry, (one

sensor only) the normal matrix was ill conditioned; this was reflected in

the correlation state vector component correlations, which are computed

from the inverse of the normal matrix. Using tracking data from two

sensors would reduce the large uncertainties in the corrections and
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improve the conditioning of the normal matrix; this technique would prob-

ably result in a convergent step if used on the SPODP. However, regard-

less of the poor tracking geometry and its numerical consequences, given

no error in the initial estimate, the correction to the initial estimate

should be negligible.

Case II

The input conditions are as follows:

I. Epoch time: Z7 June 1966, 4h 59 m 49.583 s

Z. Initial Conditions: AI5 Km error in position

A45 m/s error in velocity

3. Tracking: One sensor (Goldstone) for 135 minutes

Range and range-rate data

_K = 20 m bias = 40 m

_1% = 0.0Z m/s

4. Solution vector: 6 x 1; x, y, z, x, y,

5. Other: A priori covariance matrix

Diagonal (3AX) Z, (3AY)Z

Unrestrained solution

The LRC test case (using SPODP) and the TRW Systems case (using

AT85), with inputs as specified above, both diverged. Since this was a

one sensor tracking configuration, the normal matrix was ill conditioned.

This was reflected in the correlations derived from the inverse of the

normal matrix. As mentioned in section 3.5. i, the ill conditioning of the

normal matrix does not prevent convergence altogether; however, it is a

factor in divergence, along with nonlinearity and residual inconsistency.

Hence, the best way to rectify this test case is to resolve the ill condition-

ing of the normal matrix, i.e., use two sensors.

There are a few convergence techniques which, when applied to this

case, result in convergence, despite the one sensor tracking configuration.

One method slows down the convergence process; however, the iterations

yield appropriate corrections. A second method is to employ the energy

correction as discussed in previous sections. A convergence summary of

these techniques when applied to this test case (case II) are illustrated in

figure 32. Because of the large uncertainties associated with one sensor

only determination, this test case, as all differential corrections of lunar

orbiters, should have a two sensor tracking data set.
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3. 7 RELATIONSHIPS BETWEEN DIFFERENTIAL CORRECTION

AND PRELIMINARY ORBIT DETERMINATION

In an effort to investigate the need for a preliminary orbit determi-

nation program estimate to initiate a differential correction, very large

dispersions (6_) from the nominal estimate were used to generate AEP6

and AOP6 orbits.

The AEP6 orbit has a period of 647 minutes, nearly three times the

nominal estimate, and an eccentricity of 0.64. Figure 33 illustrates the

convergence behavior when 15, 30, and 45 minutes of tracking data (two

sensors) are used. It should be emphasized that the initial conditions are

not energy corrected, and that the solution vector is unrestrained. For

the 15 and 30 minutes of data, the AEP6 state vector was recovered.

Longer data arcs require either ambounded solution or an energy corrected

initial estimate. Nevertheless, an orbit with 6_ dispersions in energy

does not require a preliminary orbit determination program estimate to

establish the correct state vector.

The AOP6 orbit has a period of 227 minutes, very close to the

nominal value of 220 minutes. However, the error in inclination is 5.5

deg. , and in longitude of the ascending node, 12 deg. Figure 34 illustrates

the convergence rates for short arc fits, using data from two sensors.

The AOP6 state vector describing the 6_ perturbed orientation orbit was

established in three iterations, with an unrestrained normal solution. The

trend of the convergence rate in the first few iterations indicate that 45

minutes of data is near the limit of convergence, if the solution is to

remain unrestrained. The technique of step fitting could be used when

more than 45 minutes of data are available.

The errors in the elements of the lunar satellite are unlikely to be

as large as 6_dispersions, especially in the orientation elements of i and

_. The judicious selection of the initial tracking Arc and subsequent step

fit technique should insure an adequate correct orbit determination for a

lunar satellite. In a sense, the first short arc fit could be considered a

98



6

4

100
8

10-I
2 3 4 6

Iteration number, n

FIGURE 33.--CONVERGENCE CHARACTERISTICS OF

6o- ENERGY PERTURBED ORBIT

99



i

o--

-o

c-

o

E

O
m..

103

102
8

6

4

2

i0:
6

4

2

100

8

6

4

10-1

'"1

2 3 4 5 6

Iteration number, n

FIGURE 34.-- CONVERGENCE CHARACTERISTICS

OF 6o-ORIENTATION PERTURBED

ORBIT

i00



preliminary orbit determination, considering that orbital periods in error

by a factor of three (3), a 5 ° inclination error, and over 10 ° in ascending

node error can be handled with an ordinary tracking program.

4. PRELIMINARY ORBIT DETERMINATION FOR LUNAR SATELLITES

The advantage of the range and angles technique is that the data give

a complete position fix and consequently define the plane of the orbit. The

primary disadvantage is that the noise on the angular data produces inac-

curacies in the selenocentric position vectors, resulting in a scattering of

the Cartesian components. A significant problem that must be solved is

the smoothing of the observations and elimination of the scattering. The

smoothing is accomplished by use of a least squares solution. Numerical

evaluation of the technique has shown it is possible to obtain a good esti-

mate of the orbit elements in a I hour observation span using data with the

nominal data noise components of 0.006 in angles and 20 meters in range.

In an operational sense, this technique would work satisfactorily indeter-

mining an orbit using data from the end of main debo o st to the fir st occultation

by the moon. Extensive numerical results are presented in section4.4. ?.

An advantage of the range, range-rate technique is that the quality of

the observations for 9 and p is very high. The disadvantage of this tech-

nique is that in order to determine all six elements it is necessary to

invert a matrix which may be ill conditioned. The difficulty of inverting

the matrix can be overcome either by observing for a long time period or

by using more than the minimum set of six independent observations which

are required to define a conic section (the minimal data set) and a least

square s solution.

The p, _ program was designed to augment the existing LRC

(binary star) program by allowing computation of i, ,2, and ¢0(the orienta-

tion elements) sooner than would be possible using p only. The possibility

of a quicker recovery of the orientation elements is due to the use of high

quality p data (in addition to _), and a redundant data set.
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Using a time history of P and _, it is possible to obtain the inplane

orbital elements a, e, and M o, by use of the classical binary star tech-

nique, although it is necessary to remove the effect of the observer's

diurnal motion before a, e and M can be determined. This can be

• ° JIr laccompIished by subtracting T T . _ from the Doppler curve, where
I

r T is the observer's geocentric velocity and rp is the geocentric position

of the primary body. This is the function of the LRC 19 program.

It has been demonstrated that if a, e and M are obtained from
o

Doppler data that the remaining orbital elements, i, _2 and ¢o can be deter-

mined using p and _ data from one revolution of the satellite. It is possible

to perturb the initial estimate of the orientation elements by ±80 ° and

recover a satisfactory orbit. Extensive numerical results are presented

in section 4.5. ?..

In summary, both techniques solve for that orbit which, in the least

squares sense, best fits a set of tracking data. It has been demonstrated

that an orbit can be recovered in one hour, using p, a, 6 data, with no

prior knowledge of the orbital elements, or in one revolution using p and

data, when a, e and M ° have been precomputed.

4. 1 USE OF LEAST SQUARES OPERATORS

IN PRELIMINARY ORBIT DETERMINATION

In the p, a, 6 preliminary orbit determination technique it is

necessary to obtain selenocentric position vectors. The effect of the

angular data is such that an error of 0.°06 in c_or 6 produces an error of

0.4 X 105 meters in any'coordinate of the selenocentric position vector.

Since the angular error is assumed to have a normal or gaussian distri-

bution with a standard deviation of 0. o06, the problem is to determine a

technique which will smooth the data. The quality of the solution obtained

is a function of the number of triads of p, a, 6 that are used in the orbit

determination process; the use of a minimal data'set can produce serious

errors, since it is possible to have angular observations such that one has

a maximum positive deviation and the other has a maximum negative I
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deviation, resulting in serious orientation element errors. The use of a

least squares operator averages out the effect of these large angular

errors.

The least squares criterion requires that we minimize the sum of

squares of the difference between the measured and computed observations,

i.e.,

minllYm-Ycll2

where Ym is the vector of measured observations and Yc is the vector of

computed observations. If we let x be the state vector which achieves this

minimum, and x some initial estimate of the state vector the computed0

observation vector corresponding to x, Yc (x), may be expanded in a first

order Taylor series about x
O'

yc(X)
°Yc 1

yc(Xo) + --g_xI (x - Xo) +... +
X = X

O

8Y c

= A(Xo) Xo +-0--fix (x - x o) +... +

X = X
o

where we have assumed a linear relationship between the observation and

the state,

yc(X) =

The least squares criterion becomes

A(x) x

rain

Ily m - A(Xo)x ° - _--YxCI (x- Xo)ll 2

X : X
0
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Since

0Yc 0

8x Ox (A(Xo)Xo)
o o

0A
= A(Xo) + _xx Xo

= A+¢

0Yc. 2

min flym - A(Xo)X o _-_](x= Xo)ll -- minllYm = A x °

X = X
0

_-minIIym-Ax__x_Xo)II

-IA+0)I--xo)lI

The matrix 0,
whose Ekp element,

Oakj

Ekp = _-. Ox----_x?J
J

where xo and x? are components of x o, akj are the elements of the matrixP J

A, and the summation is over the components of x should be small
O )

over short time spans, since it represents the sensitivity of the f and g

coefficients to perturbations inthe local state vector. The contribution

of the term including _bis further reduced when the coefficient, (x - Xo),

is small, i.e. , when we are near the solution.

Ignoring the term ¢(x - Xo) ,

2

minlly m - A x]l = min(y m A x)T(ym - A x)
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The minimum of this quadratic surface can be found by setting its gradient

with respect to x equal to zero, i. e.

Solving for x,

T xTA T
_x(YmYm - Ym -

T A =
-2y m + 2xTATA

T
YmAX + xTATAx)

x (ATA)- 1A T
: Ym

= 0

This is the least squares operator which was used in both prelimi-

nary orbit determination techniques. The validity of the assumption

regarding the term ¢(x- Xo) was tested empirically, by using various

data arc lengths and various magnitudes of error in the initial estimate.

In all cases studied (up to 12 hours data arc for p, _; 3 hours for p, _, 6)

this assumption was justified.

4. 2 NUMERICAL CONSIDERATIONS

There are several aspects of the preliminary orbit determination

program that require consideration of possible numerical difficulties.

The most significant of these are the matrix operations in the range and

range-rate technique. It is necessary to accumulate and invert matrices

of the form MTM in double precision in order to obtain satisfactory

numerical results.

In addition, the calculation of the time from the orbital epoch should

be in double precision. Without double precision the accuracy of the

solution is decreased if large data arcs (where the effects of time errors

are magnified} are being used. It is also important to realize that the

quantization of the data may contribute a sizeable error in the p, _, 6

program. For example, if aand 6are accurate to the nearest 0.001 of a

degree, consider the error that occurs in -p. Since -P has the compo-

nents,

o = (x, y, z)
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the deviation in x is

x = pcos 5 cos

y = pcos 6 sin

z = psin 6

Ax = -p cos 6 sin _As - p sin 6 cos_ A6 J- cos 6 cos sA D

The magnitude of the rms error due to quantization of the angular measure-

ment will be 0. 3 (the rms deviation for a sawtooth waveform of unit ampli-

tude) times the quantization interval, or (0.3)(0.001)/57. 295 radians. The

error in x

Ax = -p sin (_ + 6)_

where we have neglected Ap (since its standard deviation is only 20

meters), and set Act = AS. Assuming sin (_ + 6) to be maximum and

evaluating the rrns error in z_x provides,

_Xrm s = _p(1)(O. 3)(0. 001) (54)57. 295

If p is in meters, then equation (54) gives, for the rms error in x due to

angular data quantization, approximately

Ax = -0.4 × 109(0. 525 × 10 -5 ) meters (8)
rms

= -.21 X 104 meters

The only way this error can be reduced is to increase the accuracy of

and 6. For the 0. 001 quantization intervalused here, thep,a, 5, set trans-

formed to selenocentric position vectors (given the ephemeris of the

moon) has only five significant figures; the remaining three are noise.

The loss of accuracy does not prove to be a serious deterrent to obtaining

a good estimate of the orbit.

For those cases in which the data included the nominal noise

(_ = 0.06o), the rms deviation in x is 60 times that due to quantization of

the angular data; thus the l0 -3 quantization of the angular data is
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adequate• Again it should be noted that the difficulties associated with

the inaccuracy of the angular data were overcome by the use of a least

squares operator.

4. 3 ORBIT SELECTION AND GENERATION OF DATA

In order to determine the effectiveness of the orbit determination

process, data were generated based on two state vectors. One is the

nominal state vector for the Lunar Orbiter, while the other is perturbed

significantly from the nominal. The

a = i. 6129288 lunar radii

e = 0.29063512

i = 37. 288795 degrees

_2 = 17. 143341 degrees

¢0 = 19. 260395 degrees

M = 3. 4008163 degrees

r --

P

r =
a

Period =

The elements

a --

e =

i =

=

02 =

M =

r =

P

r =
a

Period =

elements of the nominal orbit are:

i. 1441545 lunar radii = 1988. 64 km

2. 0904123 lunar radii = 3633. 32 km

221. 99267 minutes

of the perturbed orbit are:

3. 2930000 lunar radii

• 63666150

34. 080858 degrees

17. 604341 degrees

19. 173341 degrees

359. 99984 degrees

i. 1964737 lunar radii = 2079.58 km

5. 3895263 lunar radii = 9367.48 km

674. 08036 minutes

The above angular quantities are in the selenocentric coordinate

system. The epoch in each case is 27 June 1966, 4 hours, 0 minutes,
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48. 00 seconds. These two sets of data were used to examine the

numerical characteristics of the preliminary orbit determination

processes.

4.4 POSITION FIX TECHNIQUE

4.4. 1 Mathematical Formulation

A primary objection to the use of angular data in preliminary orbit

determination for a lunar satellite is the low quality of such data. The

diameter of the moon is approximately o. 5, and it is anticipated that a

one sigma deviation of o.06 could occur in the angular data', thus the error

in the measurement is potentially only one order of magnitude smaller

than the measured quantity. On the other hand, the range data, p, have a

standard deviation of 20m; this is more than 6 orders of magnitude

smaller than the measured range, and thus should be more than adequate

for the purpose proposed here. The problem, then, is to determine a

technique which can use the low quality angular data and maintain

accuracy.

The p, _, b(position fix) technique is developed using the vector

diagram in the sketch below. The vector-p can be determined by the use

-- be the vector defining the observer'sof range and angular data. Let R °

Observer

m

elenocentric Orbit
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position relative to the geocenter, R rathe ephemeris of the moon, and r

the selenocentric position vector of the vehicle. Then it is clear that

- )r : p - o+Rm

It is also possible to represent the selenocentric position vector as

r = fr o + gr ° (55)

Equation (55) states that the motion of the satellite lies in a plane and can

be represented using a two body gravitational model. The coefficients f
.:%

, and r represent the positionand g are scalar functions of time while r ° o

and velocity vectors of the vehicle at some time t .
o

There are two possible representations of the f and g coefficients.

One is a time series expansion and the other is as a closed form

coefficient. The advantage of a time series expansion is that it is not

necessary to solve Kepler's equation. However, there is the disadvantage

that a large number of terms is required to converge to a preassigned

degree of accuracy. An additional disadvantage of the time series

expansion is that the use of a large number of terms introduces numerical

difficulties in the significance of the answer obtained. On the other hand,

the closed form f and g coefficients are exact and Kepler's equation can be

solved by use of the Newton-Raphson formula, which is quadratically

convergent. A complete derivation of the closed form f and g coefficients

is in appendix E. Equation (55) can be written as

m

r g) r o
(56)
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In general, if there are n observations,

out the components for r, r ° and ro),

equation (56) becomes (writing

x'1Yl

x 2

Y2

z 2

.l

X
n

Yn

Z l

n

where I3x 3

fi I3 x 3 g iI3x3

f213x3 g213x3

-'--m ........ ---m-'------

fnl3x3 gnl3x3

is a 3 x 3 identity matrix.

as

::]
X o

i

O

7o

jZ O

(57)

Equation (57) can be represented

Y = A(xi)xi+ 1 (58)

where x. lis (i+i)st value for x, and A is the matrix of f's and g's com-i+
.th

puted using the i value of x. The least squares solution of equation (58)

is

A(xi)TA(xi)) - 1 A(xi)Txi+ i = y. (59)

Formulation of the solution in terms of equation (59) will smooth the

random errors associated with the angular data. The operator

(ATA) - 1AT in equation (59) has the effect of smoothing the data by mini-

mizing the sum of the squares of the differences between the observed

and computed selenocentric positions.

In order to obtain initial estimates for the values of f and g it is

necessary to use an approximation. This is accomplished by selecting a

short time interval of data centered about the epoch, averaging the
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values of the position vector magnitudes, and assuming the orbit to be

circular. Averaging the values of the position vector magnitudes
.th

produces a value for a, the semi-major axis. Then for the j-- observa-
tion,

f. = cos AM.
J J

a3/2 F 1VIiigj : Atj +---_inAMj- A

where AMj is the change in the mean anomaly and is obtained from the

mean motion and At.. The quantity At. is the time of the jth observation
3 J

measured from an arbitrary epoch. Since there may be a large number

of observations, it is convenient to write equation (59) as

X _

Aj J J

1 j=l

Once an initialvalueof x is obtained, this value is used to generate

improved values for the f and g coefficients. The process is repeated

until the convergence criteria are satisfied.

4.4.2 Numerical Characteristics

In order to start the p, a, 6 orbit determination process, it is

necessary to obtain a first guess for the value of the state vector. The

present technique considers a short arc of data and uses a circular

approximation to obtain a state vector. In order to determine the con-

vergence capabilities of the program, this initial approximation was

bypassed, and arbitrary state vectors were input including large errors

to see if the process would still converge. In one test case it was found

that it is possible to input as an initial estimate a state vector whose

position and velocity vector components are in error by factors of 10 and

whose signs are arbitrarily changed, and still ach.ieve convergence.

Table VIII shows the values of x and _ assumed as the first approximation,

together with the values computed by the program on successive iterations.
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TABLE VIII. PROGRAMITERATION HISTORY FOR THE P, _, 6

WITH A POOR INITIAL ESTIMATE

Note: In this test the nominal pre-

estimate subroutine was bypassed.

The circular approximation in that

subroutine would give an initial

estimate far superior to that used

here.

State vector x (meters) _ (rneters]sec)

Actual

First guess

First computed value

• 7898036 x 106

-21. 336042

7720043

I. 275553 x 103

-.0050800

1.255805

Second computed value

Third computed value

7910757

7897181

1. 277078

1. 27544 0

Fourth computed value

Fifth computed value

Sixth computed value

7897797

7898O39

7 898043

I. 275554

1. 275546

i. 275546
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The quantities x and _ are representative and were chosen for con-

venience. On the first iteration, the sign on the x component is reversed

(as it should be), and the magnitude is good to two figure s. On subsequent

iterations, the estimate oscillates with a decreasing amplitude about the

actual state vector.

Effect of Ansular Data Quality. - There is a definite dependence

in the quality of the answer on the quality of the data. Figures 35 through

40 illustrate the effect of a constant bias of 0 °. 0 in the angular data, and

1 sigma random components in the angles of 0 °. 06, 0 °.01 and 0 °. 005,

for an eccentricity of 0.29. The same plots are shown in figures 41

through 46 for an eccentricity of 0. 63. The independent variable in the

above plots is the length of observation arc (in minutes), and the

dependent variable is the deviation of the computed values of the osculating

orbital elements from the actual values.

It is clear from figures 35 through 40 that if _ = 0. 06 °, the time

of observation required to achieve a given accuracy estimate is markedly

longer than for _ --0.01 ° or _ = 0. 005 °. The minimum time to observe

the vehicle for preliminary orbit determination for the nominal angular

data noise of 0°. 06 is approximately 40 minutes; for longer observing

times, the deviation is reduced. With the nominal _ of 0°. 06, an obser-

vation time of 40 minutes will allow recovery of the orientation elements,

i, _2 and _, with less than a 2 ° error, the eccentricity, e , to one signifi-

cant figure, the epoch mean anaomaly, M o, with an error of i/2 °, and

the semi-major axis, a, with an error of 30 kin.

Increasing the observation span to 60 minutes has very little effect

on the quality of the estimates of a and M . However, there is
o

substantial improvement in the orientation element recovery, with the

error reduced to less than 0 °. 3. For the nominal intermediate lunar

orbit, about 60 minutes of data can be taken before the first occultation

by the moon, so these accuracies should be attainable.

For the highly eccentric orbit (p = 0.63, figures 7 through 12), 60

minutes of tracking with the 0 °. 06 angular data gives significantly poorer

estimates than those obtained at the 0. 29 eccentricity. The orientation
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element errors are up to 2 ° . 5, M ° is in error by 0 °.6, a is in error by

100 km and e is good to l significant figure. The increase in estimate

quality with increasing data span is more pronounced here than it was at

the lower eccentricity. Co_parison of the estimates ( e = 0.63 vs. e =

0.29) after two hours of tracking reveals no significant degradation for

the larger eccentricity; in fact, e itself and M are recovered with
o

higher accuracy.

Effect of AnGular Data Biases. - Figures 47 through 52 represent

the effect of data biases of 0 °. , 0 °. 001, 0 °. 01 and 0 °. 1 (with ¢ constant

at 0 °.06), for an eccentricity equal 0.29. Figures 53 through 58 present

the same effect for eccentricity equal 0. 63. For the data with ¢= 0 °. 06

(e = 0.63) and observation spans greater than 60 minutes, there is a

general degradation of estimate quality with increasing angular data bias.

The most severe errors occur in the orientation elements, with the bias

of 0 °. l giving an error of more than 6 ° in inclination, i0 ° in nodal

longitude and 10 ° in argument of perigee; there is also an error of

18 ° in M . In addition, it is clear that as the bias increases it is
O

necessary to observe for a longer time. Again the effect of observing

for a longer time than that indicated on the graphs is to reduce the

magnitude of the deviation.

Figures 59 through 64 represent the effect of biases of 0.0 °,

0.001 °, 0.01 °, 0. 1° (with ¢ constant at 0.005), for eccentricity equal

0.29.

The effects of biases on a and e are masked by the low quality

angular data (_ = 0°.06) in figures 47 and 48. Reducing the _to 0 °. 005

(figures 59 through 64) gives a somewhat clearer picture of the bias

effect. Figures 59 and 60, in particular, show plainly the increasingly

poor estimate quality as the angular data biases are increased.

Effect of the Number of Observing Sensors. - One might expect

that if two stations are observing a vehicle, that the results would be

better than one station observing because of the triangulation effect.

The effect of using two stations is to strengthen the smoothing capability

of the least squares operator. In table IX the effect of one station versus
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two stations is shown. The data were generated using the state vector

whose eccentricity is 0.63, over an arbitrary one hour time period

(0-= 0.06 ° and there is a 0 ° bias).

Effect of Data Qua ntlty. - There is a significant effect due to the

quantity of the data used to determine an orbit for a given time span. As

the number of data points increases, the magnitude of the deviation

decreases. Table X illustrates the deviation of the semi-major axis as

a function of the number of position vectors used. The eccentricity is

0.63, _ = 0.06 °, and the bias is 0 ° The semi-major axis is picked as a

representative element. The observation time is one hour.

4.5 RANGE, RANGE-RATE TECHNIQUE

4. 5. 1 Mathematical Formulation

The concept of using range in addition to range-rate data to

determine a preliminary orbit for a lunar orbiter is enhanced by the high

quality of the range data. A disadvantage of the _ only technique is that

it is usually necessary to observe for long time periods if a unique set of

orbit orientation elements is to be determined. We hope to avoid this

delay by using a redundant data set, as well as including range data. If

the range and range rate history of a vehicle is available, it is possible

to determine the in plane elements a, e and M
O

Returing to the vector diagram on page109, again let R ° be the

position vector of the observer with respect to the geocenter, -p the

position vector of the vehicle measured from the observer, r the seleno-

-- the position vector of the moon. Of thecentric position vector, and R m

-- and R are known at a particular instant in time.above quantities only R ° rn

Therefore, let

R = R +R
o m
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TABLE IX. EFFECT OF THE NUMBER OF OBSERVING SENSORS

ON THE QUALITY OF ORBITAL ELEMENT ESTIMATES

Element

a, lunar radii

i, rad

Actual minus estimated deviation

One sensor Two sensors

0.02223 0.00213

, rad

_', rad

M, rad

0.04087 -0.02836

-0.00892 -0.00723

-0.00645 0.00314

0.01279 0.00526

-0.05501 -0.00624

TABLE X. EFFECT OF DATA QUANTITY ON THE ESTIMATE OF

ORBITAL ENERGY - P, a, 5 PROGRAM

Number of p,a, 6 triads

Actual minus estimated semi-major axis;

6a (meters)

3 . 92102 x 107

6 .66434

12 .47829

24 .26310

60 . 06775

120 -. 00649
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Then it is clear that

(60)

Dotting equation (60) with itself and differentiating the result produces

pp = R-R +R.r + r.R + r.r (61)

The selenocentric position and velocity vectors at a time t can be

written as

r = fr +
o gro

• .__.
r

o gro

where r is the position vector at an arbitrary epoch and r
o O

velocity vector at an arbitrary epoch. The quantities f, g,

the closed form coefficients (discussed in section 4.4).

auxiliary vectors A and B as

is the

and

Define two

(6Z)

(63)

are

A = fR + fR (64)

= gR + g R (65)

Substituting equations (6Z) through (65) into equation (61) produces

PP-R" R- r- r = r. A + r. B (66)
o o

For brevity let

F. = pp - R.R - r.r i = 1 .... n
1

At any observation time the quantity F i can be evaluated as can A and B.

The unknown quantities are r ° and ro. Equation (66) can be written as

y = Mx (67)
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The least squares solution of equation (67) is

x = (MTM) -1MTy

B
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(68)
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In order that each observation may be completely processed as it is read

into the program, equation (68) will be written as

x = (M M i 1 Yi

=1 i=l

In order to generate the initial values of f, g, f and g, it is necessary to

obtain an estimate for the state vector. It is possible to obtain the values

of a, e and M ° from a harmonic analysis of the range and range-rate

curves. The method for obtaining the orientation elements is discussed

in the next section. Once a value of the state vector x has been obtained,

improved values for the f, f, g and _ coefficients are generated and the

process is repeated until a convergence criterion is satisfied.

4. 5. 2 Numerical Characteristics

The problem of determining an orbit from range and range-rate

data is difficult because there may be many orbits which give nearly the

same range and range-rate time histories. One of the most significant

difficulties is the inversion of the MTM matrix. It has been observed

that the quality of the inverse depends upon the observation time as well

as the number of observations. The use of more than a minimal data set

will'eliminate many of the difficulties in inverting the matrix.

Two techniques for using the P,P program were investigated:

1) Assume that the semi-major axis has been precomputed

using the P program, and solve for e, M o, i, ¢I ands.

2) Assume a, e and M
o

for i, _1 and _.
have been precomputed and solve

These two techniques will be treated separately.

Solution for Orbital Elements Assuming Constant a. - After one

revolution of observing the vehicle, it is possible to obtain an accurate

value for the semi-major axis using the LRC p program. The possibility

of holding this precomputed semi-major axis, a, constant during
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successive iterations was investigated. In order to obtain an approxima-
tion of the state vector, the nominal elements for e and M were assumed

and perturbations in the orientation elements were introduced. The

solution obtained from inverting the matrix the first time helps the

orientation elements significantly. However, subsequent iterations show
that the solutions diverge from the actual values due to errors which have

been introduced in e and M . Table XI illustrates the situation. Theo
orientation elements have been perturbed 20°, and e and M° input correct
to six figures and allowed to assume whatever values the program called
for on iterations after the first.

Solution for Orbital Elements Assuming a, e and M Constant. - If

elements a, e and M have been obtained from an analysis of the range-

rate curves, they may be input and held constant from iteration to

iteration. This eliminates the problem of the solution diverging after

several iterations which was observed when only a was held constant.

As already demonstrated, the quality (i. e. , the deviation from the actual

value) of the estimate of the orbital elements to which the iterations con-

verge increases with increasing observation time. However, increased

observation times introduced errors because of the increasing difference

between the orbital path predicted using a two-body mathematical model,

and that actually followed by the vehicle.

As the observation time increases, the accuracy of the orientation

elements increases, primarily because the conditioning of the matrix,

MTM, is improved. Table XII compares the final values of i, i2, and _0

for a one hour versus a three hour observation time for initial perturba-

tions of 10 °, 20 ° , 40 °, and 80 ° in the orientation elements. Note that

the size of the initial error in the orientation elements is relatively

unimportant; zeros could have been input as initial estimates with no

degradation in the final estimate. For these three hour data spans, only

three iterations were found to be necessary, since the errors in the

orientation elements were all less than 10 -2 rad.

However, to investigate the stability of the method, fourteen itera-

tions were computed using a one hour data span. This is the minimum

observation span studied (shorter arcs resulted in ill conditioned matrices)
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TABLE XlI. EFFECT OF OBSERVING INTERVAL ON THE QUALITY
OF THE ORIENTATION ELEMENT ESTIMATES - PP

PROGRAM

Actual minus estimated element, rad

One hour Three hour observation interval
Element observation interval (occulted data removed)

Initial orientation error ±i0 °

i

i

i

CO

i

CO

0.01410159

-0.02625568

0.00155586

0.00326998

-0.00079189

0.00419935

Initial orientation error e20 °

-0.00439960

0.00129179

-0.05920514

0.00326674

-0.00082691

0.00419904

Initial orientation error ±40 °

0.01389854

-0.02547841

-0.05360503

0.00325781

-0.00084762

0.00380027

Initial orientation error ±80 °

-0.00612827

-0.02271669

-0.01149236

0.00325060

-0.00079632

0.00419849
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and will represent a lower bound on estimate quality. The behavior of the

technique for this short arc is perhaps of academic interest only, since the

elements a, e, and Mo, which were assumed to have been precomputed

by the LRC _ program, would not be available until a complete revolution

of data had been processed.

The oscillatory nature of the solutions is represented in Figures

65, 66, and 67. The independent variable is the iteration number and

the dependent variable is the deviation in the particular orientation

element. The observation time is one hour for a, e, and M constant.

The initial perturbations in the orientation elements are ±10 °. Note

that the ordinate scale has been expanded to facilitate study of the

iteration history. The maximum error in inclination is about l°.5;innodal

longitude it is about 2o.5. The largest error occurs in argument of perigee,

and may be as much as 7 °.

4. 6 INFLUENCE OF PERTURBATIONS INTRODUCED

BY THE EARTH AND THE MOON'S ASPHERICITY

The preliminary orbit determination techniques that have been

developed are based on two-body motion. In order to represent the

"real world" as accurately as possible, the data that were used included

perturbations due to irregularities in the moon's gravitational field and the

earth. In order to determine the effect on estimate accuracy of using a

two-body formulation, it is necessary to examine the nature of the

perturbations.

The perturbations due to the moon are a result of the primary

oblateness term, J2,0 and the triaxial effect which is manifested as a

J2,2 term. The perturbative acceleration due to the J2,0 term is2x 10 -4 ,

while that due to the J2,2 term is 2.3 x l0 -5, when compared to the

magnitude of the central force term (Reference 8). There are three

orbital elements that have secular variations; that is, they increase

linearly with time. These are_, the argument of perigee,_2, the right

ascension of the ascending node, and M, the osculating mean anomaly.
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The other elements, a, the semi-major axis, i, the inclination, and e,

the eccentricity vary periodically. The _ximum value of the periodic

variation is of the order J2,0"

The magnitude of the perturbations due to the third body effect of the

earth depends on the semi-major axis of the lunar satellite. The nature

of the perturbations is such that the semi-major axis varies periodically;
the other elements have long periodic or secular variations. Over a short

time span, the long periodic variations appear secular. For a lunar

satellite of approximately i. 9 lunar radii, the perturbations due to the
earth are equal in magnitude to those due to the moon's oblateness.

The error committed in using a two-body model to fit "real-world"

observations grows rapidly with time. After one hour from an arbitrary

epoch, the deviation from two-body motion in the selenocentric position

vector is approximately 1500 meters; after five hours, the magnitude

of the perturbation is approximately I0,000 meters.

It is possible to minimize the effect of the perturbations by selecting

the epoch in the center of any given data arc. The primary effect of the

perturbation is to decrease the accuracy of the solution and will be more

noticeable for longer time spans. To evaluate the size of the error, two

twelve-hour observation spans using range and range-rate data were used

to determine an orbit. One span of data was based on a two-body model,

and the other included the perturbative effects of the nonsperhical moon

and the earth. The results are tabulated in table XIII. The two-body data

produces deviations from the actual elements in the fourth and fifth sig-

nificant figure, while the perturbed data produces deviations in the

second and third significant figures.

The perturbative effects of the earth, moon and data noise can be

minimized by choosing the epoch in the middle of the data span, and by

using the shortest time span that produces reasonable answers. It should

be emphasized that the perturbative effects only affect the quality of the

orbital elements, and do not cause divergence of the orbit determination

process.
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TABLE XIII. EFFECT OF TWO BODY GRAVITATIONAL MODEL

ON THE QUALITY OF ELEMENT ESTIMATION

Element

i

Deviation from

actual using two

body data

(radians)

0.00001

0.00030

0.00056

Deviation from

actual using per-

turbed data

(radians)

0.01275

O. O3065

0. O0790

5. NEW TECHNOLOGY

This section is included to comply with requirements of the "New

Technology" clause of the Master Agreement under which this report was

prepared. This report describes a study performed using certain orbit

determination processes developed by TRW Systems. The most significant

new technology resulting from this contract is the position fix preliminary

orbit determination technique.
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APPENDIX A

State Vectors and Classical Elements Defining
the Nominal Orbits and Data Sets

1. REFERENCE ORBITS - INITI%.L ESTIMATES

The reference orbits consist of the nominal orbit plus the seven

alternate lunar satellite orbits. The state vector representing these

orbits served as the initial estimate in the differential corrections. Both

the selenographic classical elements and the geocentric cartesian state

vectors of these reference orbits are listed below. In addition to the unim-

proved initial estimates, there is an energy corrected initial estimate for

each energy perturbed data set. The energy corrected initial estimate

is keyed to its particular data set, as listed in section 2.2 of this appendix.

The epoch time associated with al__! classical elements and state vectors in

this appendix is as follows:

T = 27 June 1966, 4h 0m 48.0 s

I. 1 CLASSICAL ELEMENTS OF INITIAL ESTIMATES

Classical Elements ;:4

Orbit a e M

Code i _ o_

A

B1

B2

B3

B4

2788.0

15.0

2788.0

0.0

2788.0

30.0

2788.0

45.0

2788.0

6O.O

0.2869
25.47

0.2869

25.47

0.2869

25.47

0.2869

25.47

0.2869

25.47

0

46

0
46

0

46

0
46

0

46

1,_q , _, M in degrees; a in kilometers
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Orbit

Code

B5

B6

B7

Classical Elements ':"

a e M

2788.0

15.0

2788.0

15.0

2788.0

15.0

0. 2869

10.0

0.2869

90.0

0.2869

130.0

i, _, co, M in degrees; a in kilometers

0.0

-12.46

i. 2 GEOCENTRIC CARTESIAN COORDINATES OF INITIAL ESTIMATES

Orbit

Code

A

Bl

B2

B3

B4

B5

B6

B7

X

X

-0.33522130 E6

-0.55498911 E0

-0.33521291 E6

-0.58903405 E0

-0.33525053 E6

-0.43643029 E0

-0.33529862 E6

-0.24143719 E0

-0.33536230 E6

0.16701741 El

-0.33497605 E6

-0.13982413 E0

-0.33717647 E6

-0.12889087 El

-0.33835693 E6

-0.72183550 E0

Y

Y

-0.15591166 E6

0.31028165 E0

-0.15596344 E6

0.52029433 E0

-0.15584486 E6

0.39362549 E-I

-0.15576758 E6

-0.27400032 E0

-0.15568510"E6

-0.60845176 E0

-0.15635212 E6

0.49814116 E0

-0.15514144 E6

-0.12426783 El

-0.15575143 E6

-0.22020012 El

Z

£

-0.49929099 E5

0.48958576 E0

-0.49830170 E5

0.88413385 E-I

-0.49989888 E5

0.83418740 E0

-0.50079314 E5

0.10987342 El

0.50120364 E5

0.12651979 El

-0.50106203 E5

0.57683833 E0

-0.49653804 E5

-0.17088040 E0

-0.49933339 E5

-0.55587434 E0
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i. 3 GEOCENTRIC CARTESIAN COORDINATES OF ENERGY

CORRECTED INITIAL ESTIMATES

Orbit

Code

AEPI

AE P2

AEP3

AE P6

B1 EP3

B2 EP3

B3 EP3

B4 EP3

B5 EP3

B6 EP3

B7 EP3

x

-0.33522130 E6

-0. 57890268 E0

-0.33522130 E6

-0. 59952285 E0

-0.33522130 E6

-0.62135736 E0

-0.33522130 E6

-0.68704057 E0

-0.33521291 E6

-0.65771414 E0

-0.33525053 E6

-0.49476117 E0

-0.33529862 E6

-0.28654119 E0

-0.33536230 E6

-0.10895289 E-I

-0.33497605 E6

-0.17803563 E0

-0.33717647 E6

-0.14050592 E1

-0.33835693 E6

-0.79951335 E0

Y

Y

-0.15591166 E6

0.33842679 E0

-0.15591166 E6

0.36269578 E0

-0.15591!66 E6

0.38839196 E0

-0.15591166 E6

0.465700C2 E0

-0.15596344 E6

-0.61265343 E0

-0.15584486 E6

0.99104720 E-I

-0.15576758 E6

-0.23551289 E0

-0.15568510 E6

-0.59264672 E0

-0.15635212 E6

0.58899201 E0

-0.15514144 E6

-0.12698850 E1

-0.15575143 E6

-0.22942619 E1

z

£

-0.49929099 E5

0.51262919 E0

-0.49929099 E5

0.53249907 E0

-0.49929099 E5

0.55353911 E0

-0.49929099 E5

0.61683232 E0

-0.49830170 E5

0.12516132 E0

-0.49989888 E5

0.92151589 E0

-0.50079314 E5

0.12040003 E1

-0.50120364 E5

0.13817528 El

-0.50106203 E5

0.64277529 E0

-0.49653804 E5

-0.15171957 E0

-0.49933339 E5

-0.56282225 E0

2. OBSERVED ORBITS -- DATA SETS

The observed orbits are perturbations in energy or orientation of

the nominal orbits. The state vectors which represent these orbits were

derived from the nominal orbits and its associated a priori covariance

matrix, as explained in section 3. 3. 2. The a priori covariance matrix

is listed in section 3 of this appendix. Simulated observations were
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computed from the trajectories generated by the propagation of each

respective state vector.

In addition to the geocentric cartesian coordinates of the observed

orbits, the corresponding selenographic classical elements are presented

for the purpose of comparing the nominal and perturbed orbits.

2.1 CLASSICAL ELEMENTS OF OBSERVED ORBITS

Clas sical Elements ':=

Orbit a e M

Code i _ o_

AOPl

AOP2

AOP3

AOP6

AEPI

AEP2

AE P3

AE P6

B10P3

B2OP3

B3OP3

2789.6681

15.874985

2794.8202

16.771925

2803.4247
17.686780

2850.6580

20.504861

3042.4205

15.0

3350. 8584

15.0

3732.5884

15.0

5723.5286

15.0

2803.4426

3.2191806

2803.4418

32.635833

2803.4437

47.614969

0.28730842

23.120315

0.28855734

21.022099

0.29061875

19.116735

0.30186997

14.504739

0.34152163

25.461554

0.39758537

25.461361

0.45511172
25.461385

0.63666141

25.470626

0.29063931

348.87001

0.29063919

21.902542

0.29063956

22.963905

.

349.

0.

351.

0.

353.

0.

356.

0.
347.

0.

347.

0.

347.

0.

347.

0.

23.

0.
350.

0.

349.

0
76643

0

69109

0

35375

0

97412

0
54042

0

54039

0

54037

0

55434

0

865239

0
31601

0

06925

i,_,M in degrees; a in kilometers
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0

Classical Elements ;:=

Orbit a e M

Code i _

B4OP3

B5OP3

B6OP3

B7OP3

BIEP3

BZEP3

B3EP3

B4EP3

B5EP3

B6EP3

B7EP3

2803.3755

62.602358

2803.4727

17.686188

2803.3951

17.686684

2803.4505

17.686675

3732.6725

0.00006509

3732.6357

30.0

3732.6283

45.0

3732.5488

60.0

3732.5348

15.0

3732.6107

15.0

3732.5656

15.0

0.29062854

23.301072

0.29064468

3.6607669

0.29063137

83.665441

0.29064085

123.67494

0.45512062

101.65282

0.45511673

25.461668

0.45511604

25.461617

0.45510767

25.461758

0.45510619

10.001531

0.45511396

89.992144

0.45510946

130.00142

0.0

348.31160

0.0

353. 34686

0.0

353. 34743

0.0

353. 34602

0.0

271. 34886

0.0

347. 53990

0.0

347. 54012

0.0

347. 53995

0.0

347. 55695

0.0

347. 53905

0.0

347. 55359

i, _, o_, M in degrees; a in kilometers

2.2 GEOCENTRIC CARTESIAN COORDINATES OF OBSERVED ORBITS

Orbit x y z

Code _ _

AOP1

AOP2

AOP3

-0.33521874 E6

-0.54982336 E0

-0.33521614 E6

-0.54465761 E0

-0.15588933 E6

-0.29400176 E0

-0.15592794 E6

0.27772186 E0

-0.49916474 E5

0.51483076 E0

-0.49903852 E5

0.54007576 E0

-0.33521355 E6

-0.53949185 EO

-0.15593609 E6

0.26144196 E0

-0.49891231 E5

0.56532076 E0
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AOP6

AEP1

AE P2

AEP3

AE P6

BIOP3

B2OP3

B3OP3

B4OP3

BSOP3

B6OP3

B7OP3

BIEP3

B2EP3

B3EP3

B4EP3

x

-0.33520581 E6

-0. 52399457 E0

-0.33520883 E6

-0.57173290 E0

-0.33519636 E6

-0. 58847669 E0

-0.33518390 E6

-0.60522048 E0

-0. 33514647 E6

-0. 65545183 E0

-0.33521386 E6

-0.59093755 E0

-0. 33523462 E6

-0. 40458838 E0

-0.33527561 E6

-0.19542062 E0

-0.33533377 E6

0.73757034 E-I

-0.33497078 E6

-0.12925029 E0

-0.33716638 E6

-0.12687538 El

-0.33835223 E6

-0.71243504 E0

-0.33517530 E6

-0.64101293 E0

-0.33521380 E6

-0.48057615 E0

-0.33526299 E6

-0.27557420 E0

-0.33532813 E6

-0.41852122 E-2

Y

Y

-0.15596050 E6

0.21260224 E0

-0.15590337 E6

0.32998831 E0

-0.15589503 E6

0.34969500 E0

-0.15588677 E6

0.36940163 E0

-0.15586186 E6

0.42852158 E0

-0.15598095 E6

0.48527842 E0

-0.15587452 E6

-0.19972590 E-I

-0.15580047 E6

-0.33978732 E0

-0.15571899 E6

-0.67620733 E0

-0.15637838 E6

0.44560742 E0

-0.15515441 E6

-0.12686143 E1

-0.15575876 E6

-0.22166757 El

-0.15593973 E6

0.59019409 E0

-0.15581841 E6

0.84576468 E-I

-0.15573936 E6

-0.24487105 E0

-0.15565500 E6

-0.59648964 E0

z

£

-0.49853362 E5

0.64105576 E0

-0.49926298 E5

0.50572029 E0

-0.49923494 E5

0.52185485 E0

-0.49920693 E5

0.53798937 E0

-0.49912286 E5

0.58639299 E0

-0.49787946 E5

0.17286181 E0

-0.49983146 E5

0.89604778 E0

-0.50057429 E5

0.11425043 El

-0.50109016 E5

0.12878948 El

-0.50068957 E5

0.65093064 E0

-0.49611135 E5

-0.85543531 E-I

-0.49888451 E5

-0.46611040 E0

-0.49819490 E5

0.11622517 E0

-0.50007625 E5

0.90027913 E0

-0.50074364 E5

0.11784049 El

-0.50116359 E5

0.13534131 El
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Orbit

Code

B5EP3

B6EP3

B7EP3

X

-0.33493302 E6

-0. 16874542 E0

-0.33718402 E6

-0.13768117 El

-0.33839161 E6

-0.78063096 E0

Y

-0.15633735 E6

0.56690383 E0

-0.15509822 E6
-0.12632705 E1

-0.15572284 E6

-0.22718346 E1

-0.50101872 E5

0.62972055 E0

-0.49639067 E5

-0.15637795 E0

-0.49925030 E5

0.56113333 E0

3. A PRIORI COVARIANCE MATRIX

Below is the a priori covariance matrix associated with the nominal

orbit for this study. The approximate uncertainties in position and veloc-

ity reflected in this covariance matrix were used to generate the perturbed

state vectors, which in turn were used to generate the observed orbits.

The data simulation was based on these observed orbits.

x y z _ _
0.20048468 E3 -0.39872253 E1 -0.27660444 E2 0.37987683 E0 0.41636174 E0 0.40015449 E0

0.24084474 E3 -0.27064508 E1 0.41636174 E0 0.45635079 E0 0.43858694 E0

0.22245951 E3 0.40015449 E0 0.43858694 E0 0.42151458 E0

0.71978769 E-3 -0.14314952 E-4 -0.99307574 E-4

SYMMETR I C 0.86468994 E-3 -0.97168017 E-5

0.79868285 E-3
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APPENDIX B

Compendium of Cases Run in Convergence Study

This is a partial list of runs which were made during the course of

the convergence study. The runs are categorically presented, reflecting

the approximate sequence in which the study progressed.

In order to keep the comments under the "Remarks Column" at a

minimum, the following information is pertinent to all cases unless other-

wise specified:

i. Two sensors tracking

2. No a priori information

3. Unrestrained solution

4. Range and range-rate data

5. Six parameter curve fit (x y z x y z)

The four columns, along with the above assumptions,define the vari-

ous test cases. The energy corrected initial estimates are labelled "EC"

The first letter is the reference state vector. The tracking span is in

minutes.

Initial Ob se rve d T racking

e stim ate or bit sp an Remark s

i. ENERGY CORRECTION

A AEP3 60

A-EC AEP3 60

A AEP3 300

A- EC AEP3 300

A AEP3 680

A-EC AEP3 i000

A AEP6 45

A- EC AE P6 45

A AOP3 60

Not energy corrected

Energy corrected

Not energy corrected

Energy corrected

Not energy corrected

Energy corrected

Large period error

Large period,
corrected

Orientation perturbed
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Initial Ob serve d Tr a cking

e stim ate or bit span Remark s

A

A

A

A

A

A

A

A

A-EC

A-EC

A

A

A

A-EC

A-EC

A-EC

A

A

A

A

A

A

A

A

A

A

A

2. A PRIORI INFORMATION

AEP3 30 With a priori

AEP3 30 No a priori

AEP3 15 With a priori

AEP3 15 No a priori

AEP3 5 With a priori

AEP3 5 No a priori

AEP3 3 With a priori

AEP3 3 No a priori

3. BOUNDS AND NORMAL MATRIX CONDITIONING

AEP3 60

AEP3 300

AOP3 300

AE P6 45

AE P3 60

AEP3 300

AEP3 300

AEP3 300

4. NUMBER OF SENSORS

AEP3 15

AEP3 30

AE P3 45

AEP3 60

AEP3 5

AE P3 3

AO P3 15

AOP3 15

AO P3 30

AOP3 30

AOP3 60

Bounded solution

Bounded solution

Bounded solution

Bounded solution

Bounded, one sensor

Unbounded, matrix

conditioning

Unbounded, matrix

conditioning

Unbounded, matrix

conditioning

One sensor

One sensor

One sensor

One sensor

One sensor

One sensor

One sensor

Two sensors

One sensor

Two sensors

One sensor
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Initial Ob serve d Tracking

estimate orbit span

A-EC

A-EC

A-EC

A-EC

A-EC

A-EC

STEP

5. DATA TYPE

AEP3 300

AEP3 300

AEP3 300

AE P3 60

AEP3 60

AEP3 60

6. STEP FITS

AEP3 300

STEP AEP3 I000

STEP AEP3 3300

A

A

A

Remarks

Range, range-rate,

plus angles

Range only

Range-rate only

Range, range-rate,

plus angles

Range only

Range-rate only

A

A-EC

A

BI-EC

B1

BZ-EC

B2

Initial estimate from

60 minute case

Initial estimate from

300 minute case

Initial estimate from

1000 minute case

7. EPOCH SHIFT

AEP3 60

AEP3 60

AEP3 60

One minute epoch bias
s elenocentric fit

Two minute epoch bias
selenocentric fit

Ten minute epoch bias
selenocentric fit

8. SIX-SIGMA

AEP6 15

AEP6 300

AOP6 300

PER TURBATIONS

Large period error

Energy corrected

Orientation perturbed

9. ALTERNATE LUNAR ORBITS

BIEP3 60

BIOP3 60

BZEP3 60

B2OP3 60

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions
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Initial
e s tim ate

B3-EC

B3

B4-EC

B4

B5-EC

B5

B6-EC

B6

B7-EC

B7

Observed

orbit

B3EP3

B3OP3

B4EP3

B4OP3

B5EP3

B5OP3

B6EP3

B6OP3

B7EP3

B7OP3

Tr acking

span

60

60

6o

60

6O

60

60

60

6O

6O

Remarks

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions

Nominal conditions
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APPENDIX C

AT-85 Program Description

i. GENERAL

AT-85 is the latest revision of a general orbit determination

program which has been in use at TRW Systems for over 5 years.

The program, known as "ESPOD", was originally developed for the

SPACETRACK/SPADATS Center, Ent Air Force Base, Colorado Springs,

Colorado. (AT-85 is the current version of "ESPOD", and it has been

improved and expanded considerably since it has been an operational pro-

gram at TRW Systems.)

The primary purpose of the program is to determine the elements

of a satellite orbit and a covariance matrix of uncertainty in the deter-

mination, given some initial estimate of the orbit. Orbit determination is

not limited to earth satellites; given earth-based observations, trajec-

tories of vehicles orbiting about the moon or sun can also be handled.

From the best elements obtained, the program predicts the future position

and velocity of the satellite. The program includes a sophisticated collec-

tion of mathematical, statistical, and operational techniques to make it

operate rapidly, and produce high precision in the results.

2. GENERAL ORBIT MODEL

AT-85 utilizes a Cowell method of special perturbations for propa-

gating the satellite position and velocity. The process is initiated with a

Range-Kutta starter which sets up the finite differences from which the

Cowell integration proceeds. At each given time the influences of all the

forces acting on the satellite are calculated and summed. These forces

are dependent entirely upon the position and velocity of the satellite at a

given time; that is, they are special for the moment. The integration step

size is automatically controlled to keep seventh-order differences in

acceleration within a certain numerical range. This technique guarantees

a certain accuracy but permits the step size to be as large as possible.
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The AT-85 Program provides a recursive computation technique for

calculating the perturbative acceleration of a satellite resulting from the

fact that the earth is not a homogeneous sphere. Nominally, only the first

three zonal harmonics are used; however, the first nine zonal harmonics

and all sectorial and tesseral harmonies through order and degree four

may be used. Whether or not the integration uses the earth as the dynamic

center, a triaxial potential configuration is available for the moon.

Atmospheric drag is derived as a force tangent to the direction of

travel of the satellite, jointly proportional to a drag parameter and the

density of the atmosphere. The drag parameter can assume one of the

three following forms:

i. Simple ballistic drag, CDA/2m

2. Ballistic drag plus a secular variation

3. Ballistic drag plus a periodic variation

The atmosphere, on option, may assume any of the four models listed

below.

I. ARDC Model Atmosphere, 1959

2. ARDC 59/Paetzold 62 Dynamic Model

3. U.S. Standard Atmosphere, 1962 (COESA 62 Static)

4. U.S. Standard Atmosphere, 1962, including correction for top-

atmospheric temperatures (COESA 62 Dynamic)

The program has the ability to change dynamic center. Normally,

the earth is the central body; at a specified time to epoch, a phase shift

to either the moon or the sun can be effected. The perturbing effects of

the sun, moon, and earth can be selectively included in any potential

model, though the effects of the other planets are not included.

3. DIFFERENTIAL CORRECTION

Since no set of observations obtained from a tracking system can be

fit to a trajectory perfectly, only an estimate of the actual trajectory can
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be made. Like most curve fitting programs, AT-85 uses a weighted least

squares method of forming the best estimate from the observations avail-

able. AT-85 can compute the corrections to the initial estimate in either

polar/spherical elements or in cartesian coordinates. Also, corrections

can be applied in either a geocentric or a selenocentric coordinate system.

The latter makes it possible to resolve some unorthodox tracking situations

of lunar orbiters. In the simplest case, only the position and velocity

components are to be computed; all other parameters and constants are

assumed to be known exactly. In addition to solving for six components of

position and velocity, AT-85 may include other non-orbital parameters,

such as drag parameters, observation biases, and station location coordi-

nates. The final elements are achieved by iterating on the differential

correction procedure. Convergence is obtained when the sum of the

squares of the weighted residuals changes by less than 0.1 percent due to

the last computed correction.

Since the differential correction process depends upon the appropri-

ateness of a linear approximation to a nonlinear function, linear theory

may fail if finite corrections become too large. In order to keep the cor-

rections within a linear region, bounds are used on the individual solution

components. This is a desirable technique which is automated in AT-85,

increasing its ability to converge to correct elements. The bounds are

adjusted automatically to compensate either for diverging corrections or

for too slow convergence. Whenever a "correction" results in a diverg-

ence, i.e., the new orbital elements yield a larger sum of squares of

weighted residuals than the previous elements, the bounds are halved and

anew, more constrained solution is attempted. If this fails to achieve a

convergent iteration, the bounds are halved again until one-eighth bounds

have been tried. At this point, the program exits. On the other hand, if

a correction yields a new sum of squares of weighted residuals which

actually is less than the previous sum, the bounds are doubled, permitting

larger corrections. However, when the actual sum of squares is not

within 10 percent of a previously predicted sum, the bounds remain

unchanged. When the actual sum and the predicted sum are not in close

agreement, nonlinearity is indicated.
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The covariance matrix associated with an initial estimate can be

handled in the solution of the normal equation to properly weigh the track-

ing estimate. Actually, AT-85 accepts an a priori normal matrix (the

inverse of the covariance matrix). The normal equation is modified to

"iterate" with the a priori information; that is, a priori information use-

fulness is not limited to a one iteration correction.

It is also possible to condition the accumulated tracking normal

matrix with a "conditioning normal matrix. "

This conditioning matrix is a collection of numbers, with no partic-

ular physical significance, which is added to the normal matrix. The

solution is normally very sensitive to the size of the elements (usually

diagonal) so that a great deal of experience is required in their selection.

In the bounds technique previously discussed, the program searches for

the matrix which will result in the desired solution vector magnitude. The

bounds technique is essentially a refined, automated version of normal

matrix conditioning. The final converged answer is unaffected by the con-

ditioning matrix, although the statistical significance of the tracking esti-

mate is lost.

AT-85 can also accept both an a priori normal matrix and a condi-

tioning matrix. As before, the use of the conditioning matrix destroys

the statistical interpretation.

The input and output equinoxes as well as the iteration summary can

be handled in seven different systems. They are:

1. Mean of 1950.0

2. Mean 0hr, day of epoch

3. Mean of epoch

4. Mean of date

5. True of 0hr, day of epoch

6. True of epoch

7. True of date
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The input, output, and iteration summary need not be in the same equinox.

Astronomically reduced observations of right ascension and declination in

mean of 1950.0 coordinates can also be handled, although observations are

usually true of date.

4. RESEARCH CAPABILITY

AT-85 is primarily an operational program. The program structure

permits the analyst to change any constants defining the mathematical

models, to change the weights applied to residuals, to change other sensor

parameters, to weight a priori estimates, to force the integration to par-

ticular step sizes, to change any physical constants, etc. With this con-

venience, AT-85 can be used as a research tool. The effect of varying the

potential model, the solution of observation biases, and fitting lunar orbit-

ers in selenocentric coordinates, can be studied for general or particular

influence on many types of satellites.
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APPENDIX D

AT-14 Program Description

The AT-14 Program is a data simulation routine which has been in

use at TRW Systems for several years. The routine computes observations

from a reference trajectory for a given tracking station, and considering
its particular noise model.

The reference trajectory for which observations are to be simulated

is supplied to the AT-14 Program on an ephemeris @apewhich contains

the position and velocity components at some time interval. The time

interval of the ephemeris tape determines the sample rate of the station.

The ephemeris tape can be generated on the AT-85 Program. A nice
feature of the data simulation is that the observations used in the differ-

ential corrections with the AT-85 Program were generated with the same
program. Hence the mathematical model has no inconsistencies. This

fact was insured by checking the compatibility of the physical constants
for the two programs.

A tracking station is specified by its geodetic lattitude, longitude,

and height above a reference ellipsoid. The noise model is specified by

the standard deviations and biases of each observation type. And, finally,

a tracking interval, constrained to the time span of the ephemeris tape,
is assigned.

The routine computes any of the following topocentric observations:

range, azimuth, elevation, range-rate, right ascension, and declination.

The output of the AT-14 Program is in the form of punched cards which

are in the standard observations card format of the AT-85 Program.

m

!
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APPENDIX E

Derivation of Closed Form f and g Coefficients

Assume that a position vector at an arbitrary time, t, can be

expressed as a linear function of the position and velocity vectors at a

time to, i.e.,

P(t) = fF(to) + gr(to). (El)

Since F(to) and _(to) are constant, the f and g coefficients must be functions

of time, and equation (El) can be rewritten as

¥(t) = f(t)?(to) + ?(to) g(t) (EZ)

The functions f(t) and g(t) may be written in terms of time series

expansions or as closed form expressions. The time series (which avoid

use of Kepler's equation) have the disadvantage that the number of terms

required to achieve a preassigned level of accuracy increases as the time

span, t-to, increases. Alternatively, the closed form expressions

require solution of Kepler's equation, but give a precise two body repre-

sentation regardless of the time span. For the preliminary orbit deter-

mination applications of the f and g coefficients, the time span, t-t o, may

be equivalent to several revolutions; for this reason the closed form

coefficients are used.

Assuming two-body motion,

?(t) x r(t) = _/_a(l-e z) W, (E3)

where a is the semimajor axis, e is the eccentricity, g is the gravitational

constant, and 1_g is a vector perpendicular to the plane formed by ?(t) and

r(t). Consider the following,

¥(t) xr(t o) = f(t)?(t o ) Xro(to) = f(t)_a(l-e 2) W. (E4)
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In order to evaluate equation (E4), it is necessary to introduce some

auxiliary relationships. For elliptic motion there exist the following

geometric relationships,

x(t) = alcos E(t) - e) (E5)

y(t)= a_-e z sinE(t) (ES)

where E is the eccentric anomaly, and x and y are the components of r in

the orbit plane P, Q system. Differentiating equations (E5) and (E6)

results in

#(t) =

The quantity l_.(t) is evaluated by using Kepler's equation,

-aE(t) sin E(t) (E7)

a l_-e z E(t) cos E(t) (E8)

M(t) = E(t) - e sin E(t) (E9)

ICI(t) = IE(t) - e cos E(t) ]E(t) (El0)

= ]E(t) (l - e cos E(t)) (Eli)i_i(t)

f_(t)= M(t) (i - e cos e(t))-1 _ a_(t) (ElZ)
\ ]

r(t)

Substituting equations (E5) through (E8) into equation (E4) yields

¥(t) x _o(to) = i j k

x(t) y(t) 0

_(to) #(to) 0

(El3)

Equating coefficients produces

x(t) :_(to) - £(to) y(t)

or

= f(t) /_a (i - e 2)

f(t)
x(t) _r(to) - X(to) y(t)

(El4)
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W riting

¥(to) x¥(t) = g(t)_/_a(1-e 2) _r

and evaluating the cross product as in equation (El3) gives

g(t)
X(to) y(t) - x(t) y(t o)

_/va (1 -e 2)

(E15)

Using the relationships of equations (E12) through (El5), and

M(t) = n
a3/2

allows rewriting equations (El4) and E(15) in the form

f(t)
a (cos E - e)V_cos Eo + avf_sin E sin Eo

(El6)

and

g(t)

z eza (cos Eo-e) sin E - a z_ (cos E - e) sin E °

vf_P

(El7)

which can be simplified to

f(t) = 1 _a_=_ [1 - cos (E - Eo) ] (E18)
r o [ 1

31Z
a

g(t) = (t-to) +7 [sin (E-Eo) - (E-Eo) ] (E19)

by noting that

sin E = sin (E - E o +Eo) .

and using Kepler's equation. The time rate of change of the f and g coef-

ficients are found by differentiating equations (El S) and (E19).
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APPENDIX F

Range, Right Ascension, Declination Orbit Determination Technique

This appendix provides a description of the preliminary orbit deter-

mination program, which uses range 9, right ascension _, and declination

6, data. A block diagram of the 9, _, 6 program is presented in figure

F1.

The computational algorithm for the block diagram (figure F l) is

as follows:

1) Input:

Program Constants

p, gravitational constant; (earth radii) 3/min i

f, oblateness of the earth

co, rotation rate of earth; rad/min

RE, radius of earth; ft

Sensor Data

qb, latitudes of observing stations; degrees

k, longitudes of observing stations; degrees

H, altitudes of observing stations; feet above mean sea level

C)bs e r ration s

p, range; feet

a, right ascension; degrees

6, declination; degrees

Reference Times

OE, orbital epoch; year, month, days, hours, minutes, seconds

LE, lunar ephemeris epoch; year, month,days,hours,minutes,

s econds
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Input Constants I
_, and

_j

Compute position vector of observer,f
time from orbital epoch, time froml

lunar ephemeris epoch for the ±th

......................observation ___

Compute geocentric position vector,
read ephemeris, compute selenoeentrie!

I position vector for i th observation_

<--All data processed1?i_ NO

_] YES

Select arc to obtain circular orbit

i approximation to state vector

_ -
Compute selenocentric vectors-based on!

(k-l) st estimate of state vector.

Compute kth estimate of state vector

_ NO

' Transform position _d-ve----ioc_ltTl

to selenocentric orbital elements I
i ......................... J

EXIT

FIGURE Fi.--BLOCK DIAGRAM FOR

RANGE, RIGHT ASC ENSION,
DEC LINATION PROGRAM
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2) Compute Position Vector of Observer:

c = 11 - (2f- fz) sin2, 1-1/2

s = c(1-f)z

R = (x, y, z) Geocentric Vector of Observer
O

x = -(C + H) cos_ sink RE + p cos 6 cos
g

y =-(C + FI) cos_ sink. RE + p cos6 sin
g

z =-(S + I-i)sin_ • RE + p sin 6

Convert the lunar ephemeris to days and day fractions:

DPDNL = DYSL + HRSL/24 + XMNL/1440 + SECL/86400

Convert the orbital epoch to days and day fractions:

DPDNO = DYSO + HRSO/24 + XMNO/1440 + SECO/86400

.th
Convert the time tag read from i-- data card to days and day frac-

tions (i = l.... n, where n is the number of observations):

DPDN = DYS. + HRS./24 + XMN./1440 + SEC./86400
i I I i i

.th
Compute At. from the orbital epoch for the i-- observation (to be

1

used in finding E. from Kepler's equation):
1

DTOE. = (DPDN.- DPDNO) 1440 (minutes)
1 1

kg = k + _ + _ " DTEE
go

•th
Compute At. from the lunar ephemeris epoch for the i--observation

1

(to be used in interpolating in the lunar ephemeris):

DTEE. = (DPDN. - DPDNL) 1440 (minutes)
1 1

Read p, _, 6 corresponding to a particular time, t.
1
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3) Compute Selenocentric Vector:

Interpolate in the lunar ephemeris to obtain Rm = (Xm' Ym' Zm}'

The lunar ephemeris, which is input on cards, uses the true of

date position and velocity of the moon at 5-minute intervals. Position is

in feet, and velocity is in feet per second. For computational purposes,

the position and velocity are obtained by linear interpolation. The right

ascension of the Greenwich meridian at zero hours, ephemeris epoch

day, ag o, is also input with the lunar ephemeris.

Selenocentric Vector r = (Xr' Yr' Zr)

X = X+X
r m

Yr = Y + Ym

Z = Z +Z
r m

This is done for each ordered triplet of p, a, 6 (i. e. , loop to

step Z} until all observations have been processed}.

4) Compute state vector based on circular approximation (or input any

approximation). See section 4.4.

5) Given a state vector estimate, compute the corresponding selenocentric

= At.,
1

position vector for eath observation time. For a given DTOE.
1

solve Kepler's Equation to obtain &E.. Then
1

M. - _
3/2 At.

a 1

AM. = AE. - ecos E sin AE. + esin E (1 - cos AE.)
1 1 o 1 0 1

f. = 1 a I1 - cosAE.]
i r 0 1

3/z

gi _ AM i - AE.1 + sin AE i

r. = a [1 -ecos E cos AE. + esin E sinAE.]
1 | 0 i 0 I !
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r
ecos E = 1 -

o a

r.r
esin E -

o

After selenocentric position vectors have been represented for

all observation times, compute the k th estimate of the state vector,

x k = = (A A i AT Y
"=l i= 1 i

A.x = (fi " gi), computed using the (k-1) st estimate of the statewhere

vector, and Y is the vector of selenocentric position vectors computed

from the observations.

The solution vector x is an improved estimate of the state vector.

Loop to step 5) until the convergence criterion is satisfied.
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APPENDIX G

Range and Range Rate Orbit Determination Technique

preliminary orbits for a lunar orbiter using p and p data.
f

of the program is presented in figure Gl.

2)

This appendix presents an outline of the program used to determine

A block diagram

The computational algorithm is as follows:

Input:

Program Constants

_, gravitational constant; (earth radii)3/min 2

f, oblateness coefficient

_, rotation rate of earth, radians/min

RE, radius of earth; feet

Sensor Data

9, latitudes of observing stations; degrees

k, longitudes of observing stations; degrees

H, altitudes of observering sensors, feet

Initial Estimate

a, semi-major axis; lunar radii

e, eccentricity

i, inclination; degrees

gl, right ascension of ascending node; degrees

¢0, argument of perigee; degrees

M, mean anomaly; degrees

Observations

p, range; feet

_, range rate; ft/sec

Reference Times

LE, lunar epoch; year, month, days, hours, minutes, seconds

OE, orbital epoch; year, month, days, hours, minutes, seconds

Transform orbital elements to selenocentric rectangular

components of position and velocity:
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Input - Data, orbital ele-

ments, constants, and flag to

indicate which of the elements

ia,e_Mo are precomputed

Transform elements to _

position and velocity

V
ICompute position vector of observer
for ith observation time, time from

'orbital epoch and time from lunar

ephemeris epoch. Read ephemeris

1 -- --
' Compute A. ,B. ,F. and form i th
i _ . i ,1. 1 _
row ol F1 maLrlx

All .-

_ta processe'_ NO

I
i YES

,_ompute new estimate of

state vector

EXIT_ -YES .... _. conver_:ed?'_'_-. -
-/i

NO

iI_f a assumed precomputed, rePl'ace icomputed a by input value

iIff a,e,M o assumed precomputed, i

. ___ replace computed e and M by ,
input value o

FIGURE G i.-- BLOCK DIAGRAM FOR RANGE AND RANGE- RAT E PROGRA/_
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x = x09 P + y09QX X

y = x09 P + y09 QY Y

z = x09 Pz + Y09 Qz

= x09 Px+ Y09 Qx' etc.

where:

P = cos _2 cos 09 - sin _2 sin 09 cos i
X

P = sin _2 cos 09 + cos _2 sin cocos i
Y

P = sin09 sin i
Z

Qx = -cos _ sin 09 - sin _2 cos _ cos i

Q = -sin _2 sin _ + cos _2 cos 09 cos i
Y

Qz = cos 09 sin i

p = a(1 - e2), (semi-latus rectum)

M = mean anomaly at epoch
0

E = solution of (M ° = E - e sin E) = eccentric anomaly

r = a(1 - e cos E)
09

x = a(cos E- e)
09

y09 = _,]-_pl sin E
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3)

o0

Y0_ -

Compute position

C =

S =

R =
o

x =

y =

Z =

sine
r
o3

cos E
r0_

vector of observer:

[i- (2f- f2)sin2b]I/2

c(1 - f)z

(x,y, z), Position Vector of Observer

(C+H) cos q5 cos k -RE
g

(C+H) cos % sin k .RE
g

(S+H) sin #- RE

Convert the lunar ephemeris to days and day fractions:

DPDNL = DYSL + HRSL/24 + XMNL/1440 + SECL/86400

Convert the orbital epoch to days and day fractions:

DPDNO = DYSO + HRSO/24 + XMNO/1440 + SECO/86400

Convert the time tag read from ith data card to days and day frac-

tions (i = l, "-: -"n, where n is the number of observations):

DPDN. -- DYS + HRS/24 + XMN/1440 + SEC/86400
1

Compute At i from the orbital epoch for the i th observation (to be

used in finding E. from Kepler's equation)
1

DTOE. = (DPDN.- DPDNO) 1440 (minutes)
1 1

.th
Compute At i from the lunar ephemeris epoch for the 1

(to be used in interpolating in the lunar ephemeris):

observation

DTEE. = (DPDN.- DPDNL) 1440 (minutes)
1 1

= k + + o_ - DTEE
kg _go i
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-- ,_%_

Read ephemeris R = , " " "m (Xm Ym Zm) R =' ' m (Xm' Ym' Zm)

The lunar ephemeris, which is input on cards, used the true of date

position and velocity of the moon at 5-minute intervals. Position is in

feet, and velocity is in feet per second. For computational purposes, the

position and velocity are obtained by linear interpolation. The right ascen-

stion of the Greenwich meridian at zero hours, ephemeris epoch day,

_go' is also input with the lunar ephemeris.

1 m o

.2-- 0 _

R. = R +0_xR
1 m o

4) Given the se!enocentric position and velocity, r and r , generate
" O O

f, t_, g and g for the i th observation time• Having these quantities,

form the auxiliary quantities

A. : + f.R.
1 l 1 1 l

B i = giRl + giRl

(rr)i : V/_ lecos Eosin AE.I + esin EoCOS AEi]

Fi = PiPi - Ri'Ri - r.:": i

.th
and the : row of the M matrix

5)

M i = (A. A. A. B. B:x :y :z :x iy Biz)

Continue until all

The new solution

observations have been processed.

vector is obtained by:

X :)':
i=l i=l

Loop to step 2) until convergence criterion has been satisfied.
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